280 research outputs found

    Simultaneous spectra and radio properties of BL Lac's

    Full text link
    We present the results of nine years of the blazar observing programme at the RATAN-600 radio telescope (2005-2014). The data were obtained at six frequency bands (1.1, 2.3, 4.8, 7.7, 11.2, 21.7 GHz) for 290 blazars, mostly BL Lacs. In addition, we used data at 37 GHz obtained quasi-simultaneously with the Metsahovi radio observatory for some sources. The sample includes blazars of three types: high-synchrotron peaked (HSP), low-synchrotron peaked (LSP), and intermediate-synchrotron peaked (ISP). We present several epochs of flux density measurements, simultaneous radio spectra, spectral indices and properties of their variability. The analysis of the radio properties of different classes of blazars showed that LSP and HSP BL Lac blazars are quite different objects on average. LSPs have higher flux densities, flatter spectra and their variability increases as higher frequencies are considered. On the other hand, HSPs are very faint in radio domain, tend to have steep low frequency spectra, and they are less variable than LSPs at all frequencies. Another result is spectral flattening above 7.7 GHz detected in HSPs, while an average LSP spectrum typically remains flat at both the low and high frequency ranges we considered.Comment: 14 pages, 6 figures. Accepted for publication in Astronomische Nachrichte

    Optical and Radio Variability of BL Lacertae

    Full text link
    We observed the prototype blazar, BL Lacertae, extensively in optical and radio bands during an active phase in the period 2010--2013 when the source showed several prominent outbursts. We searched for possible correlations and time lags between the optical and radio band flux variations using multifrequency data to learn about the mechanisms producing variability. During an active phase of BL Lacertae, we searched for possible correlations and time lags between multifrequency light curves of several optical and radio bands. We tried to estimate any possible variability timescales and inter-band lags in these bands. We performed optical observations in B, V, R and I bands from seven telescopes in Bulgaria, Georgia, Greece and India and obtained radio data at 36.8, 22.2, 14.5, 8 and 4.8 GHz frequencies from three telescopes in Ukraine, Finland and USA. Significant cross-correlations between optical and radio bands are found in our observations with a delay of cm-fluxes with respect to optical ones of ~250 days. The optical and radio light curves do not show any significant timescales of variability. BL Lacertae showed many optical 'mini-flares' on short time-scales. Variations on longer term timescales are mildly chromatic with superposition of many strong optical outbursts. In radio bands, the amplitude of variability is frequency dependent. Flux variations at higher radio frequencies lead the lower frequencies by days or weeks. The optical variations are consistent with being dominated by a geometric scenario where a region of emitting plasma moves along a helical path in a relativistic jet. The frequency dependence of the variability amplitude supports an origin of the observed variations intrinsic to the source.Comment: 10 pages, 9 figures, Accepted for publication in A&

    A peculiar multi-wavelength flare in the Blazar 3C 454.3

    Full text link
    The blazar 3C454.3 exhibited a strong flare seen in gamma-rays, X-rays, and optical/NIR bands during 3--12 December 2009. Emission in the V and J bands rose more gradually than did the gamma-rays and soft X-rays, though all peaked at nearly the same time. Optical polarization measurements showed dramatic changes during the flare, with a strong anti-correlation between optical flux and degree of polarization (which rose from ~ 3% to ~ 20%) during the declining phase of the flare. The flare was accompanied by large rapid swings in polarization angle of ~ 170 degree. This combination of behaviors appear to be unique. We have cm-band radio data during the same period but they show no correlation with variations at higher frequencies. Such peculiar behavior may be explained using jet models incorporating fully relativistic effects with a dominant source region moving along a helical path or by a shock-in-jet model incorporating three-dimensional radiation transfer if there is a dominant helical magnetic field. We find that spectral energy distributions at different times during the flare can be fit using modified one-zone models where only the magnetic field strength and particle break frequencies and normalizations need change. An optical spectrum taken at nearly the same time provides an estimate for the central black hole mass of ~ 2.3 * 10^9 M_sun. We also consider two weaker flares seen during the 200\sim 200 d span over which multi-band data are available. In one of them, the V and J bands appear to lead the γ\gamma-ray and X-ray bands by a few days; in the other, all variations are simultaneous.Comment: 11 pages, 4 figures, 2 tables; MNRAS in pres

    Research and Innovation As a Catalyst For Food System Transformation

    Get PDF
    Background Food systems are associated with severe and persistent problems worldwide. Governance approaches aiming to foster sustainable transformation of food systems face several challenges due to the complex nature of food systems. Scope and approach In this commentary we argue that addressing these governance challenges requires the development and adoption of novel research and innovation (R&I) approaches that will provide evidence to inform food system transformation and will serve as catalysts for change. We first elaborate on the complexity of food systems (transformation) and stress the need to move beyond traditional linear R&I approaches to be able to respond to persistent problems that affect food systems. Though integrated transdisciplinary approaches are promising, current R&I systems do not sufficiently support such endeavors. As such, we argue, we need strategies that trigger a double transformation – of food systems and of their R&I systems. Key Findings and Conclusions Seizing the opportunities to transform R&I systems has implications for how research is done – pointing to the need for competence development among researchers, policy makers and society in general – and requires specific governance interventions that stimulate a systemic approach. Such interventions should foster transdisciplinary and transformative research agendas that stimulate portfolios of projects that will reinforce one another, and stimulate innovative experiments to shape conditions for systemic change. In short, a thorough rethinking of the role of R&I as well as how it is funded is a crucial step towards the development of the integrative policies that are necessary to engender systemic change – in the food system and beyond

    On the Location of the Gamma-ray Emission in the 2008 Outburst in the BL Lacertae Object AO 0235+164 through Observations across the Electromagnetic Spectrum

    Get PDF
    We present observations of a major outburst at centimeter, millimeter, optical, X-ray, and gamma-ray wavelengths of the BL Lacertae object AO 0235+164. We analyze the timing of multi-waveband variations in the flux and linear polarization, as well as changes in Very Long Baseline Array (VLBA) images at 7mm with 0.15 milliarcsecond resolution. The association of the events at different wavebands is confirmed at high statistical significance by probability arguments and Monte-Carlo simulations. A series of sharp peaks in optical linear polarization, as well as a pronounced maximum in the 7 mm polarization of a superluminal jet knot, indicate rapid fluctuations in the degree of ordering of the magnetic field. These results lead us to conclude that the outburst occurred in the jet both in the quasi-stationary "core" and in the superluminal knot, both parsecs downstream of the supermassive black hole. We interpret the outburst as a consequence of the propagation of a disturbance, elongated along the line of sight by light-travel time delays, that passes through a standing recollimation shock in the core and propagates down the jet to create the superluminal knot. The multi-wavelength light curves vary together on long time-scales (months/years), but the correspondence is poorer on shorter time-scales. This, as well as the variability of the polarization and the dual location of the outburst, agrees with the expectations of a multi-zone emission model in which turbulence plays a major role in modulating the synchrotron and inverse Compton fluxes.Comment: Accepted for Publication in the Astrophysical Journal Letters. 7 pages (including 5 figures). Minor corrections with regard to previous version, as proposed by the refere

    Research and Innovation Supporting the Farm to Fork Strategy of the European Commission

    Get PDF
    The EU Think Tank (as part of the FIT4FOOD2030 Coordination andSupport Action) strongly supports the development of the Farm toFork Strategy as a key component of the European Green Deal,recognising the need to transform the food system as a whole

    The WEBT Campaign on the Blazar 3C279 in 2006

    Full text link
    The quasar 3C279 was the target of an extensive multiwavelength monitoring campaign from January through April 2006, including an optical-IR-radio monitoring campaign by the Whole Earth Blazar Telescope (WEBT) collaboration. In this paper we focus on the results of the WEBT campaign. The source exhibited substantial variability of optical flux and spectral shape, with a characteristic time scale of a few days. The variability patterns throughout the optical BVRI bands were very closely correlated with each other. In intriguing contrast to other (in particular, BL Lac type) blazars, we find a lag of shorter- behind longer-wavelength variability throughout the RVB ranges, with a time delay increasing with increasing frequency. Spectral hardening during flares appears delayed with respect to a rising optical flux. This, in combination with the very steep IR-optical continuum spectral index of ~ 1.5 - 2.0, may indicate a highly oblique magnetic field configuration near the base of the jet. An alternative explanation through a slow (time scale of several days) acceleration mechanism would require an unusually low magnetic field of < 0.2 G, about an order of magnitude lower than inferred from previous analyses of simultaneous SEDs of 3C279 and other FSRQs with similar properties.Comment: Accepted for publication in Ap

    Multi-Wavelength Observations of the Blazar 1ES 1011+496 in Spring 2008

    Get PDF
    The BL Lac object 1ES 1011+496 was discovered at Very High Energy gamma-rays by MAGIC in spring 2007. Before that the source was little studied in different wavelengths. Therefore a multi-wavelength (MWL) campaign was organized in spring 2008. Along MAGIC, the MWL campaign included the Metsahovi radio observatory, Bell and KVA optical telescopes and the Swift and AGILE satellites. MAGIC observations span from March to May, 2008 for a total of 27.9 hours, of which 19.4 hours remained after quality cuts. The light curve showed no significant variability. The differential VHE spectrum could be described with a power-law function. Both results were similar to those obtained during the discovery. Swift XRT observations revealed an X-ray flare, characterized by a harder when brighter trend, as is typical for high synchrotron peak BL Lac objects (HBL). Strong optical variability was found during the campaign, but no conclusion on the connection between the optical and VHE gamma-ray bands could be drawn. The contemporaneous SED shows a synchrotron dominated source, unlike concluded in previous work based on nonsimultaneous data, and is well described by a standard one zone synchrotron self Compton model. We also performed a study on the source classification. While the optical and X-ray data taken during our campaign show typical characteristics of an HBL, we suggest, based on archival data, that 1ES 1011+496 is actually a borderline case between intermediate and high synchrotron peak frequency BL Lac objects.Comment: 13 pages, accepted for publication in MNRA

    Probing the very-high-energy gamma-ray spectral curvature in the blazar PG 1553+113 with the MAGIC telescopes

    Get PDF
    PG 1553+113 is a very-high-energy (VHE, E>100GeVE>100\,\mathrm{GeV}) γ\gamma-ray emitter classified as a BL Lac object. Its redshift is constrained by intergalactic absorption lines in the range 0.4<z<0.580.4<z<0.58. The MAGIC telescopes have monitored the source's activity since 2005. In early 2012, PG 1553+113 was found in a high-state, and later, in April of the same year, the source reached its highest VHE flux state detected so far. Simultaneous observations carried out in X-rays during 2012 April show similar flaring behaviour. In contrast, the γ\gamma-ray flux at E<100GeVE<100\,\mathrm{GeV} observed by Fermi-LAT is compatible with steady emission. In this paper, a detailed study of the flaring state is presented. The VHE spectrum shows clear curvature, being well fitted either by a power law with an exponential cut-off or by a log-parabola. A simple power-law fit hypothesis for the observed shape of the PG 1553+113 VHE γ\gamma-ray spectrum is rejected with a high significance (fit probability P=2.6 ×106\times 10^{-6}). The observed curvature is compatible with the extragalactic background light (EBL) imprint predicted by current generation EBL models assuming a redshift z0.4z\sim0.4. New constraints on the redshift are derived from the VHE spectrum. These constraints are compatible with previous limits and suggest that the source is most likely located around the optical lower limit, z=0.4z=0.4, based on the detection of Lyα\alpha absorption. Finally, we find that the synchrotron self-Compton (SSC) model gives a satisfactory description of the observed multi-wavelength spectral energy distribution during the flare.Comment: 13 pages, 7 figures, accepted for publication in MNRA

    Differentiation of Gram-Negative Bacterial Aerosol Exposure Using Detected Markers in Bronchial-Alveolar Lavage Fluid

    Get PDF
    The identification of biosignatures of aerosol exposure to pathogens has the potential to provide useful diagnostic information. In particular, markers of exposure to different types of respiratory pathogens may yield diverse sets of markers that can be used to differentiate exposure. We examine a mouse model of aerosol exposure to known Gram negative bacterial pathogens, Francisella tularensis novicida and Pseudomonas aeruginosa. Mice were subjected to either a pathogen or control exposure and bronchial alveolar lavage fluid (BALF) was collected at four and twenty four hours post exposure. Small protein and peptide markers within the BALF were detected by matrix assisted laser desorption/ionization (MALDI) mass spectrometry (MS) and analyzed using both exploratory and predictive data analysis methods; principle component analysis and degree of association. The markers detected were successfully used to accurately identify the four hour exposed samples from the control samples. This report demonstrates the potential for small protein and peptide marker profiles to identify aerosol exposure in a short post-exposure time frame
    corecore