30,417 research outputs found
The applicability of self-regulation theories in sport : goal adjustment capacities, stress appraisals, coping and well-being among athletes
Objectives: We examined a model, informed by self-regulation theories, which included goal adjustment capacities, appraisals of challenge and threat, coping, and well-being. Design: Prospective. Methods: Two hundred and twelve athletes from the United Kingdom (n = 147) or Australia (n = 65), who played team (n = 135) or individual sports (n = 77), and competed at international (n = 7), national (n = 11), county (n = 67), club (n = 84), or beginner (n = 43) levels participated in this study. Participants completed measures of goal adjustment capacities and stress appraisals two days before competing. Athletes also completed questions on coping and well-being within three hours of their competition ending. Results: The way an athlete responds to an unattainable goal is associated with his or her well-being in the period leading up to and including the competition. Goal reengagement positively predicted well-being, whereas goal disengagement negatively predicted well-being. Further, goal reengagement was positively associated with challenge appraisals, which in turn was linked to task-oriented coping, and task-oriented coping positively associated with well-being. Conclusion: When highly-valued goals become unattainable, consultants could encourage athletes to seek out alternative approaches to achieve the same goal or help them develop a completely new goal
QUASAT: An orbiting very long baseline interferometer program using large space antenna systems
QUASAT, which stands for QUASAR SATELLITE, is the name given to a new mission being studied by NASA. The QUASAT mission concept involves a free flying Earth orbiting large radio telescope, which will observe astronomical radio sources simultaneously with ground radio telescopes. The primary goal of QUASAT is to provide a system capable of collecting radio frequency data which will lead to a better understanding of extremely high energy events taking place in a variety of celestial objects including quasars, galactic nuclei, interstellar masers, radio stars and pulsars. QUASAT's unique scientific contribution will be the increased resolution in the emission brightness profile maps of the celestial objects
Galilean Limit of Equilibrium Relativistic Mass Distribution
The low-temperature form of the equilibrium relativistic mass distribution is
subject to the Galilean limit by taking In this limit
the relativistic Maxwell-Boltzmann distribution passes to the usual
nonrelativistic form and the Dulong-Petit law is recovered.Comment: TAUP-2081-9
Thermodynamic Properties of the Spin-1/2 Antiferromagnetic ladder Cu2(C2H12N2)2Cl4 under Magnetic Field
Specific heat () measurements in the spin-1/2
Cu(CHN)Cl system under a magnetic field up to
are reported and compared to the results of numerical calculations
based on the 2-leg antiferromagnetic Heisenberg ladder. While the temperature
dependences of both the susceptibility and the low field specific heat are
accurately reproduced by this model, deviations are observed below the critical
field at which the spin gap closes. In this Quantum High Field phase,
the contribution of the low-energy quantum fluctuations are stronger than in
the Heisenberg ladder model. We argue that this enhancement can be attributed
to dynamical lattice fluctuations. Finally, we show that such a Heisenberg
ladder, for , is unstable, when coupled to the 3D lattice, against a
lattice distortion. These results provide an alternative explanation for the
observed low temperature ( -- ) phase (previously
interpreted as a 3D magnetic ordering) as a new type of incommensurate gapped
state.Comment: Minor changes, list of authors complete
Quantum Monte Carlo Algorithm Based on Two-Body Density Functional Theory for Fermionic Many-Body Systems: Application to 3He
We construct a quantum Monte Carlo algorithm for interacting fermions using
the two-body density as the fundamental quantity. The central idea is mapping
the interacting fermionic system onto an auxiliary system of interacting
bosons. The correction term is approximated using correlated wave functions for
the interacting system, resulting in an effective potential that represents the
nodal surface. We calculate the properties of 3He and find good agreement with
experiment and with other theoretical work. In particular, our results for the
total energy agree well with other calculations where the same approximations
were implemented but the standard quantum Monte Carlo algorithm was usedComment: 4 pages, 3 figures, 1 tabl
Structure maps for hcp metals from first principles calculations
The ability to predict the existence and crystal type of ordered structures
of materials from their components is a major challenge of current materials
research. Empirical methods use experimental data to construct structure maps
and make predictions based on clustering of simple physical parameters. Their
usefulness depends on the availability of reliable data over the entire
parameter space. Recent development of high throughput methods opens the
possibility to enhance these empirical structure maps by {\it ab initio}
calculations in regions of the parameter space where the experimental evidence
is lacking or not well characterized. In this paper we construct enhanced maps
for the binary alloys of hcp metals, where the experimental data leaves large
regions of poorly characterized systems believed to be phase-separating. In
these enhanced maps, the clusters of non-compound forming systems are much
smaller than indicated by the empirical results alone.Comment: 7 pages, 4 figures, 1 tabl
The temperature dependence of the isothermal bulk modulus at 1 bar pressure
It is well established that the product of the volume coefficient of thermal
expansion and the bulk modulus is nearly constant at temperatures higher than
the Debye temperature. Using this approximation allows predicting the values of
the bulk modulus. The derived analytical solution for the temperature
dependence of the isothermal bulk modulus has been applied to ten substances.
The good correlations to the experiments indicate that the expression may be
useful for substances for which bulk modulus data are lacking
Electronic inhomogeneity at magnetic domain walls in strongly-correlated systems
We show that nano-scale variations of the order parameter in
strongly-correlated systems can induce local spatial regions such as domain
walls that exhibit electronic properties representative of a different, but
nearby, part of the phase diagram. This is done by means of a Landau-Ginzburg
analysis of a metallic ferromagnetic system near an antiferromagnetic phase
boundary. The strong spin gradients at a wall between domains of different spin
orientation drive the formation of a new type of domain wall, where the central
core is an insulating antiferromagnet, and connects two metallic ferromagnetic
domains. We calculate the charge transport properties of this wall, and find
that its resistance is large enough to account for recent experimental results
in colossal magnetoresistance materials. The technological implications of this
finding for switchable magnetic media are discussed.Comment: Version submitted to Physical Review Letters, except for minor
revisions to reference
- …