1,402 research outputs found

    ECONOMIC ASPECTS OG THE HYBRIDISATION PROGRAMME IN PIG BREEDING

    Get PDF

    FATIMA Czech pilot

    Get PDF
    In FATIMA project, a pilot site in Czechia was established to demonstrate how precision agriculture may serve for optimizing crop yields as well as for protection of water quality, since the pilot is located in Czech largest drinking water reservoir catchment. The pilot site Dehtáře is situated in the south-west Bohemo-Moravian Highland. The site contains tile drainage and is of very heterogeneous soil conditions; from shallow, light and stony Haplic Cambisols to heavy Haplic Gleysols, with profoundly different water regimes. For the field trial (spring barley in 2016), crop yield potential was determined from crop statuses as captured by satellite images) eight years back, assessed by Enhanced Vegetation Index. Based on this, as well as on a detailed soil survey and repeated soil sampling, variable fertilizer application zones (70 – 120%) were delineated and mineral fertilizers distributed accordingly with GPS operated spreader three times from late April to late May. The rest of the site was fertilized uniformly. Soil water regime (soil moisture, soil water potential) was monitored continuously on eight spots and real-time broadcasted by wireless sensor network to WEB GIS interface via SensLog solution, adopted from FOODIE project. In the same spots, soil water was sampled by gravitational soil lysimeters. Precise harvest showed a general agreement with the delineated application zones and yield potential, however, some ambiguities were revealed, most probably due to changeable soil water regime, as documented by the sensors, as well as due to variable soil chemical properties (low soil pH). Nevertheless, precisely applied fertilizer doses in the application zones brought about 10% higher crop yields with simultaneous better N crop efficiency. Soil water quality samples confirmed that heterogeneous doses of fertilizer in correctly delineated zones is a promising approach for improvement of groundwater quality especially in shallow soils with low water and nutrient retention abilit

    Azimuthal anisotropy of heavy-flavor decay electrons in p-Pb collisions at √s<sub>NN</sub> = 5.02 TeV

    Get PDF
    Angular correlations between heavy-flavor decay electrons and charged particles at midrapidity (|η|&lt;0.8) are measured in p-Pb collisions at sNN=5.02 TeV. The analysis is carried out for the 0%-20% (high) and 60%-100% (low) multiplicity ranges. The jet contribution in the correlation distribution from high-multiplicity events is removed by subtracting the distribution from low-multiplicity events. An azimuthal modulation remains after removing the jet contribution, similar to previous observations in two-particle angular correlation measurements for light-flavor hadrons. A Fourier decomposition of the modulation results in a positive second-order coefficient (v2) for heavy-flavor decay electrons in the transverse momentum interval 1.5&lt;pT&lt;4 GeV/c in high-multiplicity events, with a significance larger than 5σ. The results are compared with those of charged particles at midrapidity and those of inclusive muons at forward rapidity. The v2 measurement of open heavy-flavor particles at midrapidity in small collision systems could provide crucial information to help interpret the anisotropies observed in such systems.</p
    corecore