116 research outputs found

    Evaluable multipartite entanglement measures: are multipartite concurrences entanglement monotones?

    Get PDF
    We discuss the monotonicity under local operations and classical communication (LOCC) of systematically constructed quantities aiming at quantification of entanglement properties of multipartite quantum systems. The so-called generalized multipartite concurrences can qualify as legitimate entanglement measures if they are monotonous under LOCC. In the paper we give a necessary and sufficient criterion for their monotonicity.Comment: 7 pages, 1 figure, minor changes - clarity of proofs improve

    Are Scattering Properties of Graphs Uniquely Connected to Their Shapes?

    Full text link
    The famous question of Mark Kac "Can one hear the shape of a drum?" addressing the unique connection between the shape of a planar region and the spectrum of the corresponding Laplace operator can be legitimately extended to scattering systems. In the modified version one asks whether the geometry of a vibrating system can be determined by scattering experiments. We present the first experimental approach to this problem in the case of microwave graphs (networks) simulating quantum graphs. Our experimental results strongly indicate a negative answer. To demonstrate this we consider scattering from a pair of isospectral microwave networks consisting of vertices connected by microwave coaxial cables and extended to scattering systems by connecting leads to infinity to form isoscattering networks. We show that the amplitudes and phases of the determinants of the scattering matrices of such networks are the same within the experimental uncertainties. Furthermore, we demonstrate that the scattering matrices of the networks are conjugated by the, so called, transplantation relation.Comment: 3 figures; Physical Review Letters, 201

    Symplectic geometry of entanglement

    Full text link
    We present a description of entanglement in composite quantum systems in terms of symplectic geometry. We provide a symplectic characterization of sets of equally entangled states as orbits of group actions in the space of states. In particular, using Kostant-Sternberg theorem, we show that separable states form a unique Kaehler orbit, whereas orbits of entanglement states are characterized by different degrees of degeneracy of the canonical symplectic form on the complex projective space. The degree of degeneracy may be thus used as a new geometric measure of entanglement and we show how to calculate it for various multiparticle systems providing also simple criteria of separability. The presented method is general and can be applied also under different additional symmetry conditions stemming, eg. from the indistinguishability of particles.Comment: LaTex, 31 pages, typos correcte

    Four-qubit entangled symmetric states with positive partial transpositions

    Full text link
    We solve the open question of the existence of four-qubit entangled symmetric states with positive partial transpositions (PPT states). We reach this goal with two different approaches. First, we propose a half-analytical-half-numerical method that allows to construct multipartite PPT entangled symmetric states (PPTESS) from the qubit-qudit PPT entangled states. Second, we adapt the algorithm allowing to search for extremal elements in the convex set of bipartite PPT states [J. M. Leinaas, J. Myrheim, and E. Ovrum, Phys. Rev. A 76, 034304 (2007)] to the multipartite scenario. With its aid we search for extremal four-qubit PPTESS and show that generically they have ranks (5,7,8). Finally, we provide an exhaustive characterization of these states with respect to their separability properties.Comment: 5+4 pages, improved version, title slightly modifie

    Separable approximation for mixed states of composite quantum systems

    Get PDF
    We describe a purely algebraic method for finding the best separable approximation to a mixed state of a composite 2x2 quantum system, consisting of a decomposition of the state into a linear combination of a mixed separable part and a pure entangled one. We prove that, in a generic case, the weight of the pure part in the decomposition equals the concurrence of the state.Comment: 13 pages, no figures; minor changes; accepted for publication in PR

    Barycentric measure of quantum entanglement

    Full text link
    Majorana representation of quantum states by a constellation of n 'stars' (points on the sphere) can be used to describe any pure state of a simple system of dimension n+1 or a permutation symmetric pure state of a composite system consisting of n qubits. We analyze the variance of the distribution of the stars, which can serve as a measure of the degree of non-coherence for simple systems, or an entanglement measure for composed systems. Dynamics of the Majorana points induced by a unitary dynamics of the pure state is investigated.Comment: 11 pages, 13 figure

    Tunneling and the Band Structure of Chaotic Systems

    Full text link
    We compute the dispersion laws of chaotic periodic systems using the semiclassical periodic orbit theory to approximate the trace of the powers of the evolution operator. Aside from the usual real trajectories, we also include complex orbits. These turn out to be fundamental for a proper description of the band structure since they incorporate conduction processes through tunneling mechanisms. The results obtained, illustrated with the kicked-Harper model, are in excellent agreement with numerical simulations, even in the extreme quantum regime.Comment: 11 pages, Latex, figures on request to the author (to be sent by fax

    Extremal spacings between eigenphases of random unitary matrices and their tensor products

    Full text link
    Extremal spacings between eigenvalues of random unitary matrices of size N pertaining to circular ensembles are investigated. Explicit probability distributions for the minimal spacing for various ensembles are derived for N = 4. We study ensembles of tensor product of k random unitary matrices of size n which describe independent evolution of a composite quantum system consisting of k subsystems. In the asymptotic case, as the total dimension N = n^k becomes large, the nearest neighbor distribution P(s) becomes Poissonian, but statistics of extreme spacings P(s_min) and P(s_max) reveal certain deviations from the Poissonian behavior
    corecore