1,532 research outputs found

    Effects of a wavy neutral sheet on cosmic ray anisotropies

    Get PDF
    The first results of a three-dimensional numerical code calculating cosmic ray anisotropies is presented. The code includes diffusion, convection, adiabatic cooling, and drift in an interplanetary magnetic field model containing a wavy neutral sheet. The 3-D model can reproduce all the principal observations for a reasonable set of parameters

    The H-Line Signed Graph of a Signed Graph

    Get PDF
    For standard terminology and notion in graph theory we refer the reader to Harary; the non-standard will be given in this paper as and when required. We treat only finite simple graphs without self loops and isolates

    SU(N) Wigner-Racah algebra for the matrix of second moments of embedded Gaussian unitary ensemble of random matrices

    Full text link
    Recently Pluhar and Weidenmueller [Ann. Phys. (N.Y.) Vol 297, 344 (2002)] showed that the eigenvectors of the matrix of second moments of embedded Gaussian unitary ensemble of random matrices generated by k-body interactions (EGUE(k)) for m fermions in N single particle states are SU(N) Wigner coefficients and derived also an expression for the eigenvalues. Going beyond this work, we will show that the eigenvalues of this matrix are square of a SU(N) Racah coefficient and thus the matrix of second moments of EGUE(k) is solved completely by SU(N) Wigner-Racah algebra.Comment: 16 page

    Shell model and deformed shell model spectroscopy of 62^{62}Ga

    Full text link
    In the present work we have reported comprehensive analysis of recently available experimental data [H.M. David et al., Phys. Lett. B {\bf 726}, 665 (2013)] for high-spin states up to 17+17^+ with T=0T=0 in the odd-odd N=ZN=Z nucleus 62^{62}Ga using shell model calculations within the full f5/2pg9/2f_{5/2}pg_{9/2} model space and deformed shell model based on Hartee-Fock intrinsic states in the same space. The calculations have been performed using jj44b effective interaction developed recently by B.A. Brown and A.F. Lisetskiy for this model space. The results obtained with the two models are similar and they are in reasonable agreement with experimental data. In addition to the T=0T=0 and T=1T=1 energy bands, band crossings and electromagnetic transition probabilities, we have also calculated the pairing energy in shell model and all these compare well with the available theoretical results.Comment: 9 pages, 4 figure
    corecore