5 research outputs found
TIPIT: A randomised controlled trial of thyroxine in preterm infants under 28 weeks' gestation
<p>Abstract</p> <p>Background</p> <p>Infants born at extreme prematurity (below 28 weeks' gestation) are at high risk of developmental disability. A major risk factor for disability is having a low level of thyroid hormone which is recognised to be a frequent phenomenon in these infants. At present it is unclear whether low levels of thyroid hormone are a cause of disability, or a consequence of concurrent adversity.</p> <p>Methods</p> <p>We propose an explanatory multi-centre double blind randomised controlled trial of thyroid hormone supplementation in babies born below 28 weeks' gestation. All infants will receive either levothyroxine or placebo until 32 weeks' corrected gestational age. The primary outcome will be brain growth. This will be assessed by the width of the sub-arachnoid space measured using cranial ultrasound and head circumference at 36 weeks' corrected gestational. The secondary outcomes will be (a) thyroid hormone concentrations measured at increasing postnatal age, (b) status of the hypothalamic pituitary axis, (c) auxological data between birth and 36 weeks' corrected gestational age, (d) thyroid gland volume, (e) volumes of brain structures (measured by magnetic resonance imaging), (f) determination of the extent of myelination and white matter integrity (measured by diffusion weighted MRI) and brain vessel morphology (measured by magnetic resonance angiography) at expected date of delivery and (g) markers of morbidity including duration of mechanical ventilation and chronic lung disease.</p> <p>We will also examine how activity of the hypothalamic-pituitary-adrenal axis modulates the effects of thyroid supplementation. This will contribute to decisions about which confounding variables to assess in large-scale studies.</p> <p>Trial registration</p> <p>Current Controlled Trials ISRCTN89493983</p
Monomeric TonB and the Ton Box Are Required for the Formation of a High-Affinity Transporter–TonB Complex
The energy-dependent uptake of trace nutrients by Gram-negative bacteria involves the coupling of an outer membrane transport protein to the transperiplasmic protein TonB. In the present study, a soluble construct of Escherichia coli TonB (residues 33–239) was used to determine the affinity of TonB to the outer membrane transporters BtuB, FecA and FhuA. Using fluorescence anisotropy, TonB(33–239) was found to bind with high-affinity (tens of nM) to both BtuB and FhuA; however, no high-affinity binding was observed to FecA. In BtuB, the high affinity binding of TonB(33–239) was eliminated by mutations in the Ton box, which yield transport-defective protein, or by the addition of a Colicin E3 fragment, which stabilizes the Ton box in a folded state. These results indicate that transport requires a high-affinity transporter-TonB interaction that is mediated by the Ton box. Characterization of TonB(33–239) using double electron-electron resonance (DEER) demonstrates that a significant population of TonB(33–239) exists as a dimer; moreover, interspin distances are in approximate agreement with interlocked dimers observed previously by crystallography for shorter TonB fragments. When bound to the outer membrane transporter, DEER shows that the TonB(33–239) dimer is converted to a monomeric form, suggesting that a dimer-monomer conversion takes place at the outer membrane during the TonB-dependent transport cycle