1,059 research outputs found

    The Impact of Nonlinear Structure Formation on the Power Spectrum of Transverse Momentum Fluctuations and the Kinetic Sunyaev-Zel'dovich Effect

    Full text link
    Cosmological transverse momentum fields, whose directions are perpendicular to Fourier wave vectors, induce temperature anisotropies in the cosmic microwave background via the kinetic Sunyaev-Zeldovich (kSZ) effect. The transverse momentum power spectrum contains the four-point function of density and velocity fields, δδvv\langle\delta\delta v v\rangle. In the post-reionization epoch, nonlinear effects dominate in the power spectrum. We use perturbation theory and cosmological NN-body simulations to calculate this nonlinearity. We derive the next-to-leading order expression for the power spectrum with a particular emphasis on the connected term that has been ignored in the literature. While the contribution from the connected term on small scales (k>0.1hMpc1k>0.1\,h\,\rm{Mpc}^{-1}) is subdominant relative to the unconnected term, we find that its contribution to the kSZ power spectrum at =3000\ell = 3000 at z<6z<6 can be as large as ten percent of the unconnected term, which would reduce the allowed contribution from the reionization epoch (z>6z>6) by twenty percent. The power spectrum of transverse momentum on large scales is expected to scale as k2k^2 as a consequence of momentum conservation. We show that both the leading and the next-to-leading order terms satisfy this scaling. In particular, we find that both of the unconnected and connected terms are necessary to reproduce k2k^2.Comment: 13 pages, 5 figures, Accepted to Ap

    Magnetic ground state of pyrochlore oxides close to metal-insulator boundary probed by muon spin rotation

    Full text link
    Magnetism of ruthernium pyrochlore oxides A2Ru2O7 (A = Hg, Cd, Ca), whose electronic properties within a localized ion picture are characterized by non-degenerate t2g orbitals (Ru5+, 4d3) and thereby subject to geometrical frustration, has been investigated by muon spin rotation/relaxation (muSR) technique. The A cation (mostly divalent) was varied to examine the effect of covalency (Hg > Cd > Ca) on their electronic property. In a sample with A = Hg that exhibits a clear metal-insulator (MI) transition below >> 100 K (which is associated with a weak structural transition), a nearly commensurate magnetic order is observed to develop in accordance with the MI transition. Meanwhile, in the case of A = Cd where the MI transition is suppressed to the level of small anomaly in the resistivity, the local field distribution probed by muon indicates emergence of a certain magnetic inhomogeneity below {\guillemotright} 30 K. Moreover, in Ca2Ru2O7 that remains metallic, we find a highly inhomogeneous local magnetism below >>25 K that comes from randomly oriented Ru moments and thus described as a "frozen spin liquid" state. The systematic trend of increasing randomness and itinerant character with decreasing covalency suggests close relationship between these two characters. As a reference for the effect of orbital degeneracy and associated Jahn-Teller instability, we examine a tetravalent ruthernium pyrochlore, Tl2Ru2O7 (Ru4+, 4d4), where the result of muSR indicates a non-magnetic ground state that is consistent with the formation of the Haldane chains suggested by neutron diffraction experiment.Comment: 12 pages, 13 figure

    Will Nonlinear Peculiar Velocity and Inhomogeneous Reionization Spoil 21cm Cosmology from the Epoch of Reionization?

    Full text link
    The 21cm background from the epoch of reionization is a promising cosmological probe: line-of-sight velocity fluctuations distort redshift, so brightness fluctuations in Fourier space depend upon angle, which linear theory shows can separate cosmological from astrophysical information. Nonlinear fluctuations in ionization, density and velocity change this, however. The validity and accuracy of the separation scheme are tested here for the first time, by detailed reionization simulations. The scheme works reasonably well early in reionization ( 80% ionized).Comment: 2 figures, matches published PRL versio

    A Water Maser and Ammonia Survey of GLIMPSE Extended Green Objects (EGOs)

    Full text link
    We present the results of a Nobeyama 45-m water maser and ammonia survey of all 94 northern GLIMPSE Extended Green Objects (EGOs), a sample of massive young stellar objects (MYSOs) identified based on their extended 4.5 micron emission. We observed the ammonia (1,1), (2,2), and (3,3) inversion lines, and detect emission towards 97%, 63%, and 46% of our sample, respectively (median rms ~50 mK). The water maser detection rate is 68% (median rms ~0.11 Jy). The derived water maser and clump-scale gas properties are consistent with the identification of EGOs as young MYSOs. To explore the degree of variation among EGOs, we analyze subsamples defined based on MIR properties or maser associations. Water masers and warm dense gas, as indicated by emission in the higher-excitation ammonia transitions, are most frequently detected towards EGOs also associated with both Class I and II methanol masers. 95% (81%) of such EGOs are detected in water (ammonia(3,3)), compared to only 33% (7%) of EGOs without either methanol maser type. As populations, EGOs associated with Class I and/or II methanol masers have significantly higher ammonia linewidths, column densities, and kinetic temperatures than EGOs undetected in methanol maser surveys. However, we find no evidence for statistically significant differences in water maser properties (such as maser luminosity) among any EGO subsamples. Combining our data with the 1.1 mm continuum Bolocam Galactic Plane Survey, we find no correlation between isotropic water maser luminosity and clump number density. Water maser luminosity is weakly correlated with clump (gas) temperature and clump mass.Comment: Astrophysical Journal, accepted. Emulateapj, 24 pages including 24 figures, plus 9 tables (including full content of online-only tables
    corecore