1,835 research outputs found

    Bootstrapping Monte Carlo Tree Search with an Imperfect Heuristic

    Full text link
    We consider the problem of using a heuristic policy to improve the value approximation by the Upper Confidence Bound applied in Trees (UCT) algorithm in non-adversarial settings such as planning with large-state space Markov Decision Processes. Current improvements to UCT focus on either changing the action selection formula at the internal nodes or the rollout policy at the leaf nodes of the search tree. In this work, we propose to add an auxiliary arm to each of the internal nodes, and always use the heuristic policy to roll out simulations at the auxiliary arms. The method aims to get fast convergence to optimal values at states where the heuristic policy is optimal, while retaining similar approximation as the original UCT in other states. We show that bootstrapping with the proposed method in the new algorithm, UCT-Aux, performs better compared to the original UCT algorithm and its variants in two benchmark experiment settings. We also examine conditions under which UCT-Aux works well.Comment: 16 pages, accepted for presentation at ECML'1

    Feature-Guided Black-Box Safety Testing of Deep Neural Networks

    Full text link
    Despite the improved accuracy of deep neural networks, the discovery of adversarial examples has raised serious safety concerns. Most existing approaches for crafting adversarial examples necessitate some knowledge (architecture, parameters, etc.) of the network at hand. In this paper, we focus on image classifiers and propose a feature-guided black-box approach to test the safety of deep neural networks that requires no such knowledge. Our algorithm employs object detection techniques such as SIFT (Scale Invariant Feature Transform) to extract features from an image. These features are converted into a mutable saliency distribution, where high probability is assigned to pixels that affect the composition of the image with respect to the human visual system. We formulate the crafting of adversarial examples as a two-player turn-based stochastic game, where the first player's objective is to minimise the distance to an adversarial example by manipulating the features, and the second player can be cooperative, adversarial, or random. We show that, theoretically, the two-player game can con- verge to the optimal strategy, and that the optimal strategy represents a globally minimal adversarial image. For Lipschitz networks, we also identify conditions that provide safety guarantees that no adversarial examples exist. Using Monte Carlo tree search we gradually explore the game state space to search for adversarial examples. Our experiments show that, despite the black-box setting, manipulations guided by a perception-based saliency distribution are competitive with state-of-the-art methods that rely on white-box saliency matrices or sophisticated optimization procedures. Finally, we show how our method can be used to evaluate robustness of neural networks in safety-critical applications such as traffic sign recognition in self-driving cars.Comment: 35 pages, 5 tables, 23 figure

    Distortion of Gravitational-Wave Packets Due to their Self-Gravity

    Full text link
    When a source emits a gravity-wave (GW) pulse over a short period of time, the leading edge of the GW signal is redshifted more than the inner boundary of the pulse. The GW pulse is distorted by the gravitational effect of the self-energy residing in between these shells. We illustrate this distortion for GW pulses from the final plunge of black hole (BH) binaries, leading to the evolution of the GW profile as a function of the radial distance from the source. The distortion depends on the total GW energy released and the duration of the emission, scaled by the total binary mass, M. The effect should be relevant in finite box simulations where the waveforms are extracted within a radius of <~ 100M. For characteristic emission parameters at the final plunge between binary BHs of arbitrary spins, this effect could distort the simulated GW templates for LIGO and LISA by a fraction of 0.001. Accounting for the wave distortion would significantly decrease the waveform extraction errors in numerical simulations.Comment: accepted for publication in Physical Review

    Hydrodynamical Response of a Circumbinary Gas Disk to Black Hole Recoil and Mass Loss

    Full text link
    Finding electromagnetic (EM) counterparts of future gravitational wave (GW) sources would bring rich scientific benefits. A promising possibility, in the case of the coalescence of a super-massive black hole binary (SMBHB), is that prompt emission from merger-induced disturbances in a supersonic circumbinary disk may be detectable. We follow the post-merger evolution of a thin, zero-viscosity circumbinary gas disk with two-dimensional simulations, using the hydrodynamic code FLASH. We analyze perturbations arising from the 530 km/s recoil of a 10^6 M_sun binary, oriented in the plane of the disk, assuming either an adiabatic or a pseudo-isothermal equation of state for the gas. We find that a single-armed spiral shock wave forms and propagates outward, sweeping up about 20% of the mass of the disk. The morphology and evolution of the perturbations agrees well with those of caustics predicted to occur in a collisionless disk. Assuming that the disk radiates nearly instantaneously to maintain a constant temperature, we estimate the amount of dissipation and corresponding post-merger light-curve. The luminosity rises steadily on the time-scale of months, and reaches few times 10^{43} erg/s, corresponding to about 10% of the Eddington luminosity of the central SMBHB. We also analyze the case in which gravitational wave emission results in a 5% mass loss in the merger remnant. The mass-loss reduces the shock overdensities and the overall luminosity of the disk by 15-20%, without any other major effects on the spiral shock pattern.Comment: 16 pages with 14 figures, submitted to MNRA

    KINEMATIC ANALYSIS OF SURFACE AND UNDERWATER FIN-SWIMMING

    Get PDF
    The aim of the study was to perform a comparative kinematic analysis of surface and underwater fin-swimming. Results of the experiments were obtained in terms of motion as well as maximum and minimum differences between the technique of surface and underwater fin-swimming

    Happiness, environmental protection and market economy

    Get PDF
    The manufacturing sector is leaving the West for Asia’s low wages and good working culture. Europe would be better off keeping these manufacturing activities, slowing down wage inflation and what is more, letting a young, cheaper workforce from the East settle down within their borders. This would aid in preserving the diverse economic structure which has been characteristic for Europe.Beside the economic growth there are two more concepts which have turned into the “holy cows” of economics during the last fifty years. One is the need to constantly improve labor productivity and the other is increasing competitiveness of nations. The high labor productivity of some countries, induces severe unemployment in the globalized world. In the other hand it is high time we understood that it is not competition, but cooperation that brings more happiness to humanity.Should we still opt for “happiness” and “sanity”, it is quite obvious that we all should, in economists’ terms, define our individual welfare functions corresponding to our own set of values, staying free from the influence of media, advertisements and fashion. The cornerstone to all this is the intelligent citizen who prefers local goods and services

    Giant magneto-optical response in non-magnetic semiconductor BiTeI driven by bulk Rashba spin splitting

    Full text link
    We study the magneto-optical (MO) response of polar semiconductor BiTeI with giant bulk Rashba spin splitting at various carrier densities. Despite being non-magnetic, the material is found to yield a huge MO activity in the infrared region under moderate magnetic fields (<3 T). By comparison with first-principles calculations, we show that such an enhanced MO response is mainly due to the intraband transitions between the Rashba-split bulk conduction bands in BiTeI, which give rise to distinct novel features and systematic doping dependence of the MO spectra. We further predict an even more pronounced enhancement in the low-energy MO response and dc Hall effect near the crossing (Dirac) point of the conduction bands
    • 

    corecore