77 research outputs found

    Tur\'an Graphs, Stability Number, and Fibonacci Index

    Full text link
    The Fibonacci index of a graph is the number of its stable sets. This parameter is widely studied and has applications in chemical graph theory. In this paper, we establish tight upper bounds for the Fibonacci index in terms of the stability number and the order of general graphs and connected graphs. Tur\'an graphs frequently appear in extremal graph theory. We show that Tur\'an graphs and a connected variant of them are also extremal for these particular problems.Comment: 11 pages, 3 figure

    Graphene transistors are insensitive to pH changes in solution

    Full text link
    We observe very small gate-voltage shifts in the transfer characteristic of as-prepared graphene field-effect transistors (GFETs) when the pH of the buffer is changed. This observation is in strong contrast to Si-based ion-sensitive FETs. The low gate-shift of a GFET can be further reduced if the graphene surface is covered with a hydrophobic fluorobenzene layer. If a thin Al-oxide layer is applied instead, the opposite happens. This suggests that clean graphene does not sense the chemical potential of protons. A GFET can therefore be used as a reference electrode in an aqueous electrolyte. Our finding sheds light on the large variety of pH-induced gate shifts that have been published for GFETs in the recent literature

    Trees with Given Stability Number and Minimum Number of Stable Sets

    Full text link
    We study the structure of trees minimizing their number of stable sets for given order nn and stability number α\alpha. Our main result is that the edges of a non-trivial extremal tree can be partitioned into nαn-\alpha stars, each of size n1nα\lceil \frac{n-1}{n-\alpha} \rceil or n1nα\lfloor \frac{n-1}{n-\alpha}\rfloor, so that every vertex is included in at most two distinct stars, and the centers of these stars form a stable set of the tree.Comment: v2: Referees' comments incorporate

    Data-Driven Induction of Shadowed Sets Based on Grade of Fuzziness

    Get PDF
    We propose a procedure devoted to the induction of a shadowed set through the post-processing of a fuzzy set, which in turn is learned from labeled data. More precisely, the fuzzy set is inferred using a modified support vector clustering algorithm, enriched in order to optimize the fuzziness grade. Finally, the fuzzy set is transformed into a shadowed set through application of an optimal alpha-cut. The procedure is tested on synthetic and real-world datasets

    Mad Tea Party Cyclic Partitions

    No full text
    corecore