1,137 research outputs found

    RX J0911+05: A Massive Cluster Lens at z=0.769

    Get PDF
    We report the detection of a massive high-redshift cluster of galaxies near the quadruple quasar RX J0911+05, using the LRIS instrument on the Keck-II telescope. The cluster is found to have a mean redshift of =0.7689+/-0.002 and a velocity dispersion of sigma=836{+180-200} km/s, based on redshift measurements for 24 member galaxies. This massive high-redshift cluster is the origin of the unusually large external shear required by lensing models of the quadruple quasar system. We predict the expected time delay depending on the exact contribution of the cluster. A measurement of the time delay and further deep lensing and X-ray observations will unravel useful properties of this serendipitously discovered high-redshift cluster, and may put interesting cosmological constraints on H0.Comment: Submitted to ApJL, 7 pages, 5 figure

    A Test of the Collisional Dark Matter Hypothesis from Cluster Lensing

    Get PDF
    Spergel & Steinhardt proposed the possibility that the dark matter particles are self-interacting, as a solution to two discrepancies between the predictions of cold dark matter models and the observations: first, the observed dark matter distribution in some dwarf galaxies has large, constant-density cores, as opposed to the predicted central cusps; and second, small satellites of normal galaxies are much less abundant than predicted. The dark matter self-interaction would produce isothermal cores in halos, and would also expel the dark matter particles from dwarfs orbiting within large halos. However, another inevitable consequence of the model is that halos should become spherical once most particles have interacted. Here, I rule out this model by the fact that the innermost regions of dark matter halos in massive clusters of galaxies are elliptical, as shown by gravitational lensing and other observations. The absence of collisions in the lensing cores of massive clusters implies that any dark matter self-interaction is too weak to have affected the observed density profiles in the dark-matter dominated dwarf galaxies, or to have eased the destruction of dwarf satellites in galactic halos. If sxs_x is the cross section and mxm_x the mass of the dark matter particle, then s_x/m_x < 10^{-25.5} \cm^2/\gev.Comment: to appear in ApJ, January 1 200

    Very High-Redshift Lensed Galaxies

    Full text link
    We review in this paper the main results recently obtained on the identification and study of very high-z galaxies usinglensing clusters as natural gravitational telescopes. We present in detail our pilot survey with ISAAC/VLT, aimed at the detection of z>7 sources. Evolutionary synthesis models for extremely metal-poor and PopIII starbursts have been used to derive the observational properties expected for these high-z galaxies, such as expected magnitudes and colors, line fluxes for the main emission lines, etc. These models have allowed to define fairly robust selection criteria to find z~7-10 galaxies based on broad-band near-IR photometry in combination with the traditional Lyman drop-out technique. The first results issued from our photometric and spectroscopic survey are discussed, in particular the preliminary confirmation rate, and the global properties of our high-z candidates, including the latest results on the possible z=10.0 candidate A1835-1916. The search efficiency should be significantly improved by the future near-IR multi-object ground-based and space facilities. However, strong lensing clusters remain a factor of ~5-10 more efficient than blank fields in this redshift domain, within the FOV of a few arcminutes around the cluster core, for the typical depth required for this survey project.Comment: 14 pages, 7 figures, Proceedings of IAU Symposium No. 225: The Impact of Gravitational Lensing on Cosmology, Y. Mellier and G. Meylan, Ed

    The Abundance of Low-luminosity Lyman alpha Emitters at High Redshift

    Full text link
    We derive the luminosity function of high-redshift Lyman alpha emitting sources from a deep, blind, spectroscopic survey that utilized strong-lensing magnification by intermediate-redshift clusters of galaxies. We observed carefully selected regions near 9 clusters, consistent with magnification factors generally greater than 10 for the redshift range 4.5<z<6.7. Eleven emission-line candidates were located in the range 2.2<z<5.6 whose identification we justify as Lyman alpha, in most cases via further spectroscopic observations. The selection function we constructed for our survey takes into account our varying intrinsic Lyman alpha line sensitivity as a function of wavelength and sky position. By virtue of the strong magnification factor, we provide constraints on the Lyman alpha luminosity function to unprecedented limits of 10^40 erg/s, corresponding to a star-formation rate of 0.01 Msun/yr. Our cumulative z=5 Lyman alpha luminosity function is consistent with a power law form, n(>L) proportional to L^-1 over 10^41 to 10^42.5 erg/s. When combined with the results of other surveys, limited at higher luminosities, our results suggest evidence for the suppression of star formation in low-mass halos, as predicted in popular models of galaxy formation.Comment: 22 pages, 14 figures, submitted to Ap

    ISAAC/VLT observations of a lensed galaxy at z=10.0

    Get PDF
    We report the first likely spectroscopic confirmation of a z 10.0 galaxy from our ongoing search for distant galaxies with ISAAC/VLT. Galaxy candidates at z >~ 7 are selected from ultra-deep JHKs images in the core of gravitational lensing clusters for which deep optical imaging is also available, including HST data. The object reported here, found behind Abell 1835, exhibits a faint emission line detected in the J band, leading to z=10.0 when identified as Ly-a, in excellent agreement with the photometric redshift determination. Redshifts z < 7 are very unlikely for various reasons we discuss. The object is located on the critical lines corresponding to z=9 to 11. The magnification factor \mu ranges from 25 to 100. For this object we estimate SFR(Ly-a) (0.8-2.2) Msun/yr and SFR(UV) (47-75) Msun/yr, both uncorrected for lensing. The steep UV slope indicates a young object with negligible dust extinction. SED fits with young low-metallicity stellar population models yield (adopting mu=25) a lensing corrected stellar mass of M*~8.e+6 Msun, and luminosities of 2.e+10 Lsun, corresponding to a dark matter halo of a mass of typically M_tot>~ 5.e+8 Msun. In general our observations show that under excellent conditions and using strong gravitational lensing direct observations of galaxies close to the ``dark ages'' are feasible with ground-based 8-10m class telescopes.Comment: To be published in A&A, Vol. 416, p. L35. Press release information, additional figures and information available at http://obswww.unige.ch/sfr and http://webast.ast.obs-mip.fr/galaxie
    • 

    corecore