20 research outputs found

    BIOCHEMICAL CONSTITUENTS OF WITHANIA SOMNIFERA UNDER THE INDOLE-3-BUTYRIC ACID AND TRIAZOLE SOIL DRENCHING TECHNIQUES

    Get PDF
    The present study aimed at understanding the effect of indole-3-butyric acid (IBA) and triazole compounds viz., triadimefon (TDM) and propiconazole (PCZ) on the biochemicals of ashwagandha. Treatments were given on 50, 90 and 130 days after sowing (DAS). Biochemical constituents such as proline, glycine betaine and total alkaloids content were determined. It was observed that proline, glycine betaine and alkaloids content were enhanced by TDM and PCZ than followed by IBA treatment when compared to control for respective growth stages.  Among the treatments, triazole compounds caused pronounced effect to the biochemical accumulation in higher level when compared to IBA treatment. These results suggest that, triazole active compounds act as a growth regulator also influence hormonal balance and great significance, which is helpful to satisfy the needs of enhance the biochemical contents in Ashwagandha

    Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench.

    Get PDF
    The research was performed to define the effect of water deficit on early growth, biomass allocation and biochemical constituents, proline metabolism and yield of five varieties of bhendi (Abelmoschus esculentus (L.) Moench.) plants. We found that there were significant differences in early growth, dry matter accumulation, biochemical constituents and proline metabolism among the five varieties. The root length, shoot length, total leaf area, fresh weight and dry weight were significantly reduced under drought-induced stress treatment. The proline content and g-glutamyl kinase were significantly enhanced and proline oxidase activities were reduced. Drought stress caused an increase in the free amino acid and glycinebetaine content

    Drought-induced biochemical modifications and proline metabolism in Abelmoschus esculentus (L.) Moench.

    Get PDF
    The research was performed to define the effect of water deficit on early growth, biomass allocation and biochemical constituents, proline metabolism and yield of five varieties of bhendi (Abelmoschus esculentus (L.) Moench.) plants. We found that there were significant differences in early growth, dry matter accumulation, biochemical constituents and proline metabolism among the five varieties. The root length, shoot length, total leaf area, fresh weight and dry weight were significantly reduced under drought-induced stress treatment. The proline content and g-glutamyl kinase were significantly enhanced and proline oxidase activities were reduced. Drought stress caused an increase in the free amino acid and glycinebetaine content

    Multifaceted role of geminivirus associated betasatellite in pathogenesis

    No full text
    Begomoviruses have emerged as a group of plant pathogens that cause devastating diseases in a wide range of crops in tropical and subtropical regions of the world. Betasatellites, the circular single-stranded DNA molecules with the size of almost half of that of the associated helper begomoviruses, are often essential for the production of typical disease symptoms in several virus-host systems. Association of betasatellites with begomoviruses results in more severe symptoms in the plants and affects the yield of numerous crops leading to huge agroeconomic losses. βC1, the only protein encoded by betasatellites, plays a multifaceted role in the successful establishment of infection. This protein counteracts the innate defence mechanisms of the host, like RNA silencing, ubiquitin-proteasome system and defence responsive hormones. In the last two decades, the molecular aspect of betasatellite pathogenesis has attracted much attention from the researchers worldwide, and reports have shown that βC1 protein aggravates the helper begomovirus disease complex by modulating specific host factors. This review discusses the molecular aspects of the pathogenesis of betasatellites, including various βC1-host factor interactions and their effects on the suppression of defence responses of the plants

    Improved perturb and observe maximum power point tracking technique for solar photovoltaic power generation systems

    No full text
    The primary concerns in the practical photovoltaic (PV) system are the power reduction due to the change in operating conditions, such as the temperature or irradiance, the high computation burden due to the modern maximum power point tracking (MPPT) mechanisms, and to maximize the PV array output during the rapid change in weather conditions. The conventional perturb and observe (P&O) technique is preferred in most of the PV systems. Nevertheless, it undergoes false tracking of maximum power point (MPP) during the rapid change in solar insolation due to the wrong decision in the duty cycle. To avoid the computational burden and drift effect, this article presents a simple and enhanced P&O MPPT technique. The proposed technique is enhanced by including the change in current (dI), in addition to the changes in output voltage and output power of the PV module. The effect of including the dI profile with the traditional method is explained with the fixed and variable step-size methods. The mathematical expression for the drift-free condition is derived. The traditional boost converter is considered for validating the effectiveness of the proposed methods by employing the direct duty cycle technique

    Data_Sheet_1_Functional characterization of a new ORF βV1 encoded by radish leaf curl betasatellite.pdf

    No full text
    Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel βV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. βV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by βV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that βV1 protein localizes to the cellular periphery. βV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that βV1 functions as a protein elicitor and a pathogenicity determinant.</p

    Table_1_Functional characterization of a new ORF βV1 encoded by radish leaf curl betasatellite.docx

    No full text
    Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel βV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. βV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by βV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that βV1 protein localizes to the cellular periphery. βV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that βV1 functions as a protein elicitor and a pathogenicity determinant.</p

    Table_2_Functional characterization of a new ORF βV1 encoded by radish leaf curl betasatellite.DOCX

    No full text
    Whitefly-transmitted begomoviruses infect and damage a wide range of food, feed, and fiber crops worldwide. Some of these viruses are associated with betasatellite molecules that are known to enhance viral pathogenesis. In this study, we investigated the function of a novel βV1 protein encoded by radish leaf curl betasatellite (RaLCB) by overexpressing the protein using potato virus X (PVX)-based virus vector in Nicotiana benthamiana. βV1 protein induced lesions on leaves, suggestive of hypersensitive response (HR), indicating cell death. The HR reaction induced by βV1 protein was accompanied by an increased accumulation of reactive oxygen species (ROS), free radicals, and HR-related transcripts. Subcellular localization through confocal microscopy revealed that βV1 protein localizes to the cellular periphery. βV1 was also found to interact with replication enhancer protein (AC3) of helper virus in the nucleus. The current findings suggest that βV1 functions as a protein elicitor and a pathogenicity determinant.</p
    corecore