1,922 research outputs found

    Timing of Spermarche and Menarche are Associated with Physical Activity and Sedentary Behavior Among Korean Adolescents

    Get PDF
    OBJECTIVES: This study examined the timing of menarche and spermarche and their associations with physical activity (PA) and sedentary behavior (SB) after controlling for body mass index (BMI). METHODS: Multiple logistic regression analyses were conducted to determine whether the timing of menarche in girls and spermarche in boys is associated with PA and SB independent of BMI in a nationally representative sample of Korean adolescents (13–18 years; N = 74,186). RESULTS: After controlling for age, family economic status, and BMI, early timing of spermarche among boys was associated with a higher likelihood of engaging in PA and a lower likelihood of engaging in SB for < 2 hours during weekdays. By contrast, boys with late timing of spermarche were less likely to engage in PA and more likely to engage in SB for < 2 hours. Among girls, early or late timing of menarche was associated with a higher likelihood of engaging in PA and a lower likelihood of engaging in SB. CONCLUSION: Timing of menarche in girls and spermarche in boys could be a marker for PA and SB among Korean adolescents. To promote PA and discourage SB among Korean adolescents, school-based, grade-specific interventions can be tailored by the absence or presence of menarche/spermarche

    Economic opportunity, health behaviours, and health outcomes in the USA: a population-based cross-sectional study

    Get PDF
    Background Inequality of opportunity, defined as differences in the prospects for upward social mobility, might have important consequences for health. Diminished opportunity can lower the motivation to invest in future health by reducing economic returns to health investments and undermining hope. We estimated the association between county-level economic opportunity and individual-level health in young adults in the general US population. Methods In this population-based cross-sectional study, we used individual-level data from the 2009–12 United States Behavioral Risk Factor Surveillance Surveys. Our primary outcomes were current self-reported overall health and the number of days of poor physical and mental health in the last month. Economic opportunity was measured by the county-averaged national income rank attained by individuals born to families in the lowest income quartile. We restricted our sample to adults aged 25–35 years old to match the data used to assign exposure. Multivariable ordinary least squares and probit models were used to estimate the association between the outcomes and economic opportunity. We adjusted for a range of demographic and socioeconomic characteristics, including age, sex, race, education, income, access to health care, area income inequality, segregation, and social capital. Findings We assessed nearly 147 000 individuals between the ages of 25 years and 35 years surveyed from 2009 to 2012. In models adjusting for individual-level demographics and county-level socioeconomic characteristics, increases in county-level economic opportunity were associated with greater self-reported overall health. An interdecile increase in economic opportunity was associated with 0·76 fewer days of poor mental health (95% CI −1·26 to −0·25) and 0·53 fewer days of poor physical health (−0·96 to −0·09) in the last month. The results were robust to sensitivity analyses. Interpretation Economic opportunity is independently associated with self-reported health and health behaviours. Policies seeking to expand economic opportunities might have important spillover effects on health. Funding Robert Wood Johnson Foundation Health and Society Scholars Program

    Quantum non-malleability and authentication

    Get PDF
    In encryption, non-malleability is a highly desirable property: it ensures that adversaries cannot manipulate the plaintext by acting on the ciphertext. Ambainis, Bouda and Winter gave a definition of non-malleability for the encryption of quantum data. In this work, we show that this definition is too weak, as it allows adversaries to "inject" plaintexts of their choice into the ciphertext. We give a new definition of quantum non-malleability which resolves this problem. Our definition is expressed in terms of entropic quantities, considers stronger adversaries, and does not assume secrecy. Rather, we prove that quantum non-malleability implies secrecy; this is in stark contrast to the classical setting, where the two properties are completely independent. For unitary schemes, our notion of non-malleability is equivalent to encryption with a two-design (and hence also to the definition of Ambainis et al.). Our techniques also yield new results regarding the closely-related task of quantum authentication. We show that "total authentication" (a notion recently proposed by Garg, Yuen and Zhandry) can be satisfied with two-designs, a significant improvement over the eight-design construction of Garg et al. We also show that, under a mild adaptation of the rejection procedure, both total authentication and our notion of non-malleability yield quantum authentication as defined by Dupuis, Nielsen and Salvail.Comment: 20+13 pages, one figure. v2: published version plus extra material. v3: references added and update

    Characterisation and Mechanical Testing of Hydrothermally Treated HA/ZrO2 Composites

    Get PDF
    Hydrothermal treatment is traditionally employed to improve the sinterability of powder compacts by reducing porosity and increasing apparent density. The effect of hydrothermal treatment on green powder compacts has been assessed in order to better understand how treatment may affect the sinter ability of the bodies. Laboratory synthesized nano sized hydroxyapatite (HA) and a commercial zirconia (ZrO2) powder have been ball milled together to create composite mixtures containing 0-5 wt% ZrO2 loadings. Disc shaped bodies have been formed using uniaxial and subsequent isostatic pressure. The resultant coherent samples were subjected to hydrothermal treatment at either 120 or 250°C for 10 h in order to assess the effect of this processing technique on the physical, mechanical and microstructural properties of the green composites. ZrO2 loadings up to 3 wt% increased apparent density from 90 to 92%, whereas increased loading to 5 wt% increased flexural strength, from 6 to 9 MPa. Increasing the hydrothermal treatment temperature increased open porosity, from ~44 to ~48% and reduced biaxial flexural strengths of the treated bodies compared to those of their room temperature isostatically pressed counterparts (~10 to ~6 MPa). © 2009 Springer Science+Business Media, LLC

    Increased Risk of Respiratory Mortality Associated with the High-Tech Manufacturing Industry: A 26-Year Study

    Get PDF
    Global high-tech manufacturers are mainly located in newly industrialized countries, raising concerns about adverse health consequences from industrial pollution for people living nearby. We investigated the ecological association between respiratory mortality and the development of Taiwan's high-tech manufacturing, taking into account industrialization and socioeconomic development, for 19 cities and counties-6 in the science park group and 13 in the control group-from 1982 to 2007. We applied a linear mixed-effects model to analyze how science park development over time is associated with age-adjusted and sex-specific mortality rates for asthma and chronic obstructive pulmonary disease (COPD). Asthma and female COPD mortality rates decreased in both groups, but they decreased 9%-16% slower in the science park group. Male COPD mortality rates increased in both groups, but the rate increased 10% faster in the science park group. Science park development over time was a significant predictor of death from asthma (p ≤ 0.0001) and COPD (p = 0.0212). The long-term development of clustered high-tech manufacturing may negatively affect nearby populations, constraining health advantages that were anticipated, given overall progress in living standards, knowledge, and health services. National governments should incorporate the long-term health effects on local populations into environmental impact assessments

    On the Mass of Population III Stars

    Get PDF
    Performing 1D hydrodynamical calculations coupled with non-equilibrium processes for H2 formation, we pursue the thermal and dynamical evolution of filamentary primordial clouds and attempt to make an estimate on the mass of population III stars. It is found that, almost independent of initial conditions, a filamentary cloud continues to collapse nearly isothermally due to H_2 cooling until the cloud becomes optically thick against the H_2 lines. During the collapse the cloud structure separates into two parts, i.e., a denser spindle and a diffuse envelope. The spindle contracts quasi-statically, and thus the line mass of the spindle keeps a characteristic value determined solely by the temperature (800\sim 800 K). Applying a linear theory, we find that the spindle is unstable against fragmentation during the collapse. The wavelength of the fastest growing perturbation lessens as the collapse proceeds. Consequently, successive fragmentation could occur. When the central density exceeds nc101011cm3n_c \sim 10^{10-11} cm^{-3}, the successive fragmentation may cease since the cloud becomes opaque against the H_2 lines and the collapse decelerates appreciably. The mass of the first star is then expected to be typically 3M\sim 3 M_\odot, which may grow up to 16M\sim 16 M_\odot by accreting the diffuse envelope. Thus, the first-generation stars are anticipated to be massive but not supermassive.Comment: 23 pages, 6 figures, accepted by ApJ (April 10

    On the Power of Quantum Encryption Keys

    Full text link
    The standard definition of quantum state randomization, which is the quantum analog of the classical one-time pad, consists in applying some transformation to the quantum message conditioned on a classical secret key kk. We investigate encryption schemes in which this transformation is conditioned on a quantum encryption key state ρk\rho_k instead of a classical string, and extend this symmetric-key scheme to an asymmetric-key model in which copies of the same encryption key ρk\rho_k may be held by several different people, but maintaining information-theoretical security. We find bounds on the message size and the number of copies of the encryption key which can be safely created in these two models in terms of the entropy of the decryption key, and show that the optimal bound can be asymptotically reached by a scheme using classical encryption keys. This means that the use of quantum states as encryption keys does not allow more of these to be created and shared, nor encrypt larger messages, than if these keys are purely classical.Comment: 17 pages, 1 figur

    Detection of diffuse TeV gamma-ray emission from the nearby starburst galaxy NGC 253

    Get PDF
    We report the TeV gamma-ray observations of the nearby normal spiral galaxy NGC 253. At a distance of \sim2.5 Mpc, NGC 253 is one of the nearest starburst galaxies. This relative closeness, coupled with the high star formation rate in the galaxy, make it a good candidate TeV gamma-ray source. Observations were carried out in 2000 and 2001 with the CANGAROO-II 10 m imaging atmospheric Cerenkov telescope. TeV gamma-ray emission is detected at the 11σ\sim 11\sigma level with a flux of (7.8±2.5)×1012cm2sec1(7.8 \pm 2.5)\times 10^{-12} {\rm cm}^{-2} {\rm sec}^{-1} at energies >>0.5 TeV. The data indicate that the emission region is broader than the point spread function of our telescope.Comment: 4 pages, double colomn, 3 figures, aa.cl

    Computational Indistinguishability between Quantum States and Its Cryptographic Application

    Full text link
    We introduce a computational problem of distinguishing between two specific quantum states as a new cryptographic problem to design a quantum cryptographic scheme that is "secure" against any polynomial-time quantum adversary. Our problem, QSCDff, is to distinguish between two types of random coset states with a hidden permutation over the symmetric group of finite degree. This naturally generalizes the commonly-used distinction problem between two probability distributions in computational cryptography. As our major contribution, we show that QSCDff has three properties of cryptographic interest: (i) QSCDff has a trapdoor; (ii) the average-case hardness of QSCDff coincides with its worst-case hardness; and (iii) QSCDff is computationally at least as hard as the graph automorphism problem in the worst case. These cryptographic properties enable us to construct a quantum public-key cryptosystem, which is likely to withstand any chosen plaintext attack of a polynomial-time quantum adversary. We further discuss a generalization of QSCDff, called QSCDcyc, and introduce a multi-bit encryption scheme that relies on similar cryptographic properties of QSCDcyc.Comment: 24 pages, 2 figures. We improved presentation, and added more detail proofs and follow-up of recent wor
    corecore