Performing 1D hydrodynamical calculations coupled with non-equilibrium
processes for H2 formation, we pursue the thermal and dynamical evolution of
filamentary primordial clouds and attempt to make an estimate on the mass of
population III stars. It is found that, almost independent of initial
conditions, a filamentary cloud continues to collapse nearly isothermally due
to H_2 cooling until the cloud becomes optically thick against the H_2 lines.
During the collapse the cloud structure separates into two parts, i.e., a
denser spindle and a diffuse envelope. The spindle contracts quasi-statically,
and thus the line mass of the spindle keeps a characteristic value determined
solely by the temperature (∼800 K). Applying a linear theory, we find
that the spindle is unstable against fragmentation during the collapse. The
wavelength of the fastest growing perturbation lessens as the collapse
proceeds. Consequently, successive fragmentation could occur. When the central
density exceeds nc∼1010−11cm−3, the successive fragmentation may
cease since the cloud becomes opaque against the H_2 lines and the collapse
decelerates appreciably. The mass of the first star is then expected to be
typically ∼3M⊙, which may grow up to ∼16M⊙ by accreting
the diffuse envelope. Thus, the first-generation stars are anticipated to be
massive but not supermassive.Comment: 23 pages, 6 figures, accepted by ApJ (April 10