23,060 research outputs found

    Investigation of blown boundary layers with an improved wall jet system

    Get PDF
    The behavior of two dimensional incompressible turbulent wall jets submerged in a boundary layer when they are used to prevent boundary layer separation on plane surfaces is investigated. The experimental set-up and instrumentation are described. Experimental results of zero pressure gradient flow and adverse pressure gradient flow are presented. Conclusions are given and discussed

    Investigation of blown boundary layers with an improved wall jet system

    Get PDF
    Measurements were made in a two dimensional incompressible wall jet submerged under a thick upstream boundary layer with a zero pressure gradient and an adverse pressure gradient. The measurements included mean velocity and Reynolds stresses profiles, skin friction, and turbulence spectra. The measurements were confined to practical ratios (less than 2) of the jet velocity to the free stream velocity. The wall jet used in the experiments had an asymmetric velocity profile with a relatively higher concentration of momentum away from the wall. An asymmetric jet velocity profile has distinct advantages over a uniform jet velocity profile, especially in the control of separation. Predictions were made using Irwin's (1974) method for blown boundary layers. The predictions clearly show the difference in flow development between an asymmetric jet velocity profile and a uniform jet velocity profile

    The large-scale modulation of cosmic rays in mid-1982: Its dependence on heliospheric longitude and radius

    Get PDF
    Near solar maximum, a series of large radial solar wind shocks in June and July 1982 provided a unique opportunity to study the solar modulation of galactic cosmic rays with an array of spacecraft widely separated both in heliocentric radius and longitude. By eliminating hysteresis effects it is possible to begin to separate radial and azimuthal effects in the outer heliosphere. On the large scale, changes in modulation (both the increasing and recovery phases) propagate outward at close to the solar wind velocity, except for the near-term effects of solar wind shocks, which may propagate at a significantly higher velocity. In the outer heliosphere, azimuthal effects are small in comparison with radial effects for large-scale modulation at solar maximum

    Experimental study of two separating turbulent boundary layers

    Get PDF
    A detailed study of two strong adverse pressure gradient flows, one with a free-stream velocity of 35 m/sec, at throat (producing a Re sub theta of 27000 at detachment) and another with free-stream velocity of 22 m/sec, at throat (producing a Re sub theta of 19000 at detachment) is presented. In these examples flows separate slowly and reattach very rapidly over a very short distance in a streamwise direction. In the backflow region, there appears to be a semi-logarithmically flat region in the streamwise fluctuating velocity component, u', which spreads over a definite range of y/delta. In power spectra, the flow variables phi sub upsilon upsilon (kappa sub 1 delta)/ -uv bar sub max vs. kappa sub 1 delta forms a unique set of scaling parameters for adverse pressure gradient flows. Experimental results show good agreement with previous studies

    Galactic cosmic ray radial gradients and the anomalous He component near maximum solar modulation and to radii beyond 34 AU from the Sun

    Get PDF
    Radial gradients for relativistic galactic cosmic rays (E 70 MeV) remained nearly constant at approx. 2.5%/AU from 1978-84, which includes the period of maximum solar modulation in 1981-82. For energies 30-70 MeV/n, gradients decreased at solar maximum to values of 1%/AU (protons) and 4%/AU (helium), and appear to be increasing again in 1983-84 toward the values found for solar minimum. The anomalous helium component has not reappeared, either at 1 AU or at Pioneer 10 at R 34 AU

    The 1973-1984 Solar Modulation of Cosmic Ray Nuclei

    Get PDF
    As a continuation of the program of solar modulation studies, new measurements were carried out with the cosmic ray telescope on the Earth satellite IMP-8, of the intensity time variations and the energy spectra of galactic cosmic ray protons, helium, carbon and oxygen from 1980 through 1984 including the recent solar maximum. In order to test the applicability of a steady state model of solar modulation during a period which includes times of rapidly changing modulation, these fluxes were equated with the predictions of a conventional model of solar modulation which assumes equilibrium between modulation mechanisms. It is found that for a reasonable range of variations of the diffusion coefficient the model predictions can be made to agree with the measurements at essentially all times during the studied period. The model can account also for the observed hysteresis effects between cosmic rays of different rigidities
    corecore