7,056 research outputs found

    Hamiltonian formalism and the Garrett-Munk spectrum of internal waves in the ocean

    Full text link
    Wave turbulence formalism for long internal waves in a stratified fluid is developed, based on a natural Hamiltonian description. A kinetic equation appropriate for the description of spectral energy transfer is derived, and its self-similar stationary solution corresponding to a direct cascade of energy toward the short scales is found. This solution is very close to the high wavenumber limit of the Garrett-Munk spectrum of long internal waves in the ocean. In fact, a small modification of the Garrett-Munk formalism includes a spectrum consistent with the one predicted by wave turbulence.Comment: 4 pages latex fil

    Elastic energy of proteins and the stages of protein folding

    Full text link
    We propose a universal elastic energy for proteins, which depends only on the radius of gyration RgR_{g} and the residue number NN. It is constructed using physical arguments based on the hydrophobic effect and hydrogen bonding. Adjustable parameters are fitted to data from the computer simulation of the folding of a set of proteins using the CSAW (conditioned self-avoiding walk) model. The elastic energy gives rise to scaling relations of the form RgNνR_{g}\sim N^{\nu} in different regions. It shows three folding stages characterized by the progression with exponents ν=3/5,3/7,2/5\nu = 3/5, 3/7, 2/5, which we identify as the unfolded stage, pre-globule, and molten globule, respectively. The pre-globule goes over to the molten globule via a break in behavior akin to a first-order phase transition, which is initiated by a sudden acceleration of hydrogen bonding

    Thinking territory historically.

    Get PDF
    BACKGROUND: While the randomised controlled trial (RCT) is generally regarded as the design of choice for assessing the effects of health care, within the social sciences there is considerable debate about the relative suitability of RCTs and non-randomised studies (NRSs) for evaluating public policy interventions. // OBJECTIVES: To determine whether RCTs lead to the same effect size and variance as NRSs of similar policy interventions; and whether these findings can be explained by other factors associated with the interventions or their evaluation. // METHODS: Analyses of methodological studies, empirical reviews, and individual health and social services studies investigated the relationship between randomisation and effect size of policy interventions by: 1) Comparing controlled trials that are identical in all respects other than the use of randomisation by 'breaking' the randomisation in a trial to create non-randomised trials (re-sampling studies). 2) Comparing randomised and non-randomised arms of controlled trials mounted simultaneously in the field (replication studies). 3) Comparing similar controlled trials drawn from systematic reviews that include both randomised and non-randomised studies (structured narrative reviews and sensitivity analyses within meta-analyses). 4) Investigating associations between randomisation and effect size using a pool of more diverse RCTs and NRSs within broadly similar areas (meta-epidemiology). // RESULTS: Prior methodological reviews and meta-analyses of existing reviews comparing effects from RCTs and nRCTs suggested that effect sizes from RCTs and nRCTs may indeed differ in some circumstances and that these differences may well be associated with factors confounded with design. Re-sampling studies offer no evidence that the absence of randomisation directly influences the effect size of policy interventions in a systematic way. No consistent explanations were found for randomisation being associated with changes in effect sizes of policy interventions in field trials

    Laser slowing of CaF molecules to near the capture velocity of a molecular MOT

    Get PDF
    Laser slowing of CaF molecules down to the capture velocity of a magneto-optical trap (MOT) for molecules is achieved. Starting from a two-stage buffer gas beam source, we apply frequency-broadened "white-light" slowing and observe approximately 6x10^4 CaF molecules with velocities near 10\,m/s. CaF is a candidate for collisional studies in the mK regime. This work represents a significant step towards magneto-optical trapping of CaF

    Unification of gravity, gauge fields, and Higgs bosons

    Full text link
    We consider a diffeomorphism invariant theory of a gauge field valued in a Lie algebra that breaks spontaneously to the direct sum of the spacetime Lorentz algebra, a Yang-Mills algebra, and their complement. Beginning with a fully gauge invariant action -- an extension of the Plebanski action for general relativity -- we recover the action for gravity, Yang-Mills, and Higgs fields. The low-energy coupling constants, obtained after symmetry breaking, are all functions of the single parameter present in the initial action and the vacuum expectation value of the Higgs.Comment: 12 pages, no figures. v2 minor correction

    A Primer on the Current State-of-the-Science Neoadjuvant and Adjuvant Therapy for Patients with Locally Advanced Rectal Adenocarcinomas

    Get PDF
    Patients with rectal cancers, due to the unique location of the tumor, have a recurrence pattern distinct from colon cancers. Advances in adjuvant therapy over the last three decades have played an important role in improving patient outcomes. This article serves to review the clinical studies that lay the basis for our current standard-of-care treatment of patients with locally advanced rectal cancer, as well as touch upon future ongoing experimental clinical trials of adjuvant chemoradiation therapy

    Coherent Cancellation of Photothermal Noise in GaAs/Al0.92_{0.92}Ga0.08_{0.08}As Bragg Mirrors

    Get PDF
    Thermal noise is a limiting factor in many high-precision optical experiments. A search is underway for novel optical materials with reduced thermal noise. One such pair of materials, gallium arsenide and aluminum-alloyed gallium arsenide (collectively referred to as AlGaAs), shows promise for its low Brownian noise when compared to conventional materials such as silica and tantala. However, AlGaAs has the potential to produce a high level of thermo-optic noise. We have fabricated a set of AlGaAs crystalline coatings, transferred to fused silica substrates, whose layer structure has been optimized to reduce thermo-optic noise by inducing coherent cancellation of the thermoelastic and thermorefractive effects. By measuring the photothermal transfer function of these mirrors, we find evidence that this optimization has been successful.Comment: 10 pages, 7 figure
    corecore