20,521 research outputs found

    A correlative study of SSC's, interplanetary shocks, and solar activity

    Get PDF
    A total of 93 SSC's were examined during the four year period from 1968 to 1971 at and near the peak of the solar activity cycle. Of the 93 SSC's 81 could be associated with solar activity, such as solar flares and radio bursts of Type II and Type IV. The mean propagation speeds of these flare-associated events ranged from 400 to 1000 km/sec with an average speed of 600-700 km/sec. Disturbances associated with 48 of the SSC's have been studied in detail using the corresponding interplanetary (IP) magnetic field, and plasma data when they were available. It was found that 41 of the 48 disturbances corresponded to IP shock waves, and the remaining seven events were tangential discontinuities. Thirty percent of the IP shocks had thick structure (i.e. the magnetic field jump across the shock occurred over a distance much greater than 50 proton Larmor radii). Also given is a statistical study of the gross geometry of a typical or average shock surface based on multiple spacecraft sightings and their relative orientation with respect to the solar flare. It is suggested that a typical shock front propagating out from the sun at l AU has a radius of curvature on the order of l AU. Also given are some general properties of oblique IP flare-shocks

    The Color-Octet intrinsic charm in η′\eta^\prime and B→η′XB\to \eta^\prime X decays

    Full text link
    Color-octet mechanism for the decay B\to \eta^\prime X is proposed to explain the large branching ratio of Br(B\to \eta^\prime X)\sim 1\times 10^{-3} recently announced by CLEO. We argue that the inclusive \eta^\prime production in B decays may dominantly come from the Cabbibo favored b\to (\bar c c)_8s process where \bar c c pair is in a color-octet configuration, and followed by the nonperturbative transition (\bar c c)_8\to \eta^\prime X. The color-octet intrinsic charm component in the higher Fock states of \eta^\prime is crucial and is induced by the strong coupling of \eta^\prime to gluons via QCD axial anomaly.Comment: 9 pages, RevTex, 1 PS figur

    Cancellation of Infrared Divergences in Hadronic Annihilation Decays of Heavy Quarkonia

    Full text link
    In the framework of a newly developed factorization formalism which is based on NRQCD, explicit cancellations are shown for the infrared divergences that appeared in the previously calculated hadronic annihilation decay rates of P-wave and D-wave heavy quarkonia. We extend them to a more general case that to leading order in v2v^2 and next-to-leading order in αs\alpha_s, the infrared divergences in the annihilation amplitudes of color-singlet QQˉ(2S+1LJ)Q\bar{Q}(^{2S+1}L_J) pair can be removed by including the contributions of color-octet operators QQˉ(2S+1(L−1)J′)Q\bar{Q}(^{2S+1}(L-1)_{J'}), QQˉ(2S+1(L−3)J′′)Q\bar{Q}(^{2S+1}(L-3)_{J''}), ... in NRQCD. We also give the decay widths of 3DJ→LH^3D_J\rightarrow LH at leading order in αs\alpha_s.Comment: 8 pages, LaTex(3 figures included), to be publishe

    A tracking algorithm for the stable spin polarization field in storage rings using stroboscopic averaging

    Full text link
    Polarized protons have never been accelerated to more than about 2525GeV. To achieve polarized proton beams in RHIC (250GeV), HERA (820GeV), and the TEVATRON (900GeV), ideas and techniques new to accelerator physics are needed. In this publication we will stress an important aspect of very high energy polarized proton beams, namely the fact that the equilibrium polarization direction can vary substantially across the beam in the interaction region of a high energy experiment when no countermeasure is taken. Such a divergence of the polarization direction would not only diminish the average polarization available to the particle physics experiment, but it would also make the polarization involved in each collision analyzed in a detector strongly dependent on the phase space position of the interacting particle. In order to analyze and compensate this effect, methods for computing the equilibrium polarization direction are needed. In this paper we introduce the method of stroboscopic averaging, which computes this direction in a very efficient way. Since only tracking data is needed, our method can be implemented easily in existing spin tracking programs. Several examples demonstrate the importance of the spin divergence and the applicability of stroboscopic averaging.Comment: 39 page

    Documentation of the GLAS fourth order general calculation model. Volume 3: Vectorized code for the Cyber 205

    Get PDF
    Volume 3 of a 3-volume technical memoranda which contains documentation of the GLAS fourth order genera circulation model is presented. The volume contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A dictionary of FORTRAN variables used in the Scalar Version, and listings of the FORTRAN Code compiled with the C-option, are included. Cross reference maps of local variables are included for each subroutine

    Documentation of the GLAS fourth order general circulation model. Volume 1: Model documentation

    Get PDF
    The volume 1, of a 3 volume technical memoranda which contains a documentation of the GLAS Fourth Order General Circulation Model is presented. Volume 1 contains the documentation, description of the stratospheric/tropospheric extension, user's guide, climatological boundary data, and some climate simulation studies

    Documentation of the GLAS fourth order general circulation model. Volume 2: Scalar code

    Get PDF
    Volume 2, of a 3 volume technical memoranda contains a detailed documentation of the GLAS fourth order general circulation model. Volume 2 contains the CYBER 205 scalar and vector codes of the model, list of variables, and cross references. A variable name dictionary for the scalar code, and code listings are outlined

    Decays of the Meson BcB_c to a PP-Wave Charmonium State χc\chi_c or hch_c

    Full text link
    The semileptonic decays, Bc⟶χc(hc)+ℓ+νℓB_{c}{\longrightarrow}{\chi_c}(h_c)+{\ell}+{{\nu}}_{\ell}, and the two-body nonleptonic decays, Bc⟶χc(hc)+hB_{c}{\longrightarrow}{\chi_c}(h_c)+h, (here χc\chi_c and hch_c denote (ccˉ[3PJ])(c\bar c[^3P_J]) and (ccˉ[1P1])(c\bar c[^1P_1]) respectively, and hh indicates a meson) were computed. All of the form factors appearing in the relevant weak-current matrix elements with BcB_c as its initial state and a PP-wave charmonium state as its final state for the decays were precisely formulated in terms of two independent overlapping-integrations of the wave-functions of BcB_c and the PP-wave charmonium and with proper kinematics factors being `accompanied'. We found that the decays are quite sizable, so they may be accessible in Run-II at Tevatron and in the foreseen future at LHC, particularly, when BTeV and LHCB, the special detectors for B-physics, are borne in mind. In addition, we also pointed out that the decays Bc→hc+...B_c\to h_c+... may potentially be used as a fresh window to look for the hch_c charmonium state, and the cascade decays, Bc→χc[3P1,2]+l+νlB_c\to \chi_c[^3P_{1,2}]+l+\nu_l (Bc→χc[3P1,2]+hB_c\to \chi_c[^3P_{1,2}]+h) with one of the radiative decays χc[3P1,2]→J/ψ+γ\chi_c[^3P_{1,2}] \to J/\psi+\gamma being followed accordingly, may affect the observations of BcB_c meson through the decays Bc→J/ψ+l+νlB_{c}\to {J/\psi}+{l}+\nu_{l} (Bc→J/ψ+hB_c\to J/\psi+h) substantially.Comment: 24 pages, 3 figures, the replacement for improving the presentation and adding reference
    • …
    corecore