38 research outputs found

    Remarks on hard Lefschetz conjectures on Chow groups

    Full text link
    We propose two conjectures of Hard Lefschetz type on Chow groups and prove them for some special cases. For abelian varieties, we shall show they are equivalent to well-known conjectures of Beauville and Murre.Comment: to appear in Sciences in China, Ser. A Mathematic

    MAC-in-the-Box: Verifying a Minimalistic Hardware Design for MAC Computation

    Get PDF
    We study the verification of security properties at the state machine level of a minimalistic device, called the MAC-in-the-Box (MITB). This device computes a message authentication code based on the SHA-3 hash function and a key that is stored on device, but never output directly. It is designed for secure password storage, but may also be used for secure key-exchange and second-factor authentication. We formally verify, in the HOL4 theorem prover, that no outside observer can distinguish this device from an ideal functionality that provides only access to a hashing oracle. Furthermore, we propose protocols for the MITB’s use in password storage, key-exchange and second-factor authentication, and formally show that it improves resistance against host-compromise in these three application scenarios

    Security in the Presence of Key Reuse: Context-Separable Interfaces and their Applications

    Get PDF
    Key separation is often difficult to enforce in practice. While key reuse can be catastrophic for security, we know of a number of cryptographic schemes for which it is provably safe. But existing formal models, such as the notions of joint security (Haber-Pinkas, CCS ’01) and agility (Acar et al., EUROCRYPT ’10), do not address the full range of key-reuse attacks—in particular, those that break the abstraction of the scheme, or exploit protocol interactions at a higher level of abstraction. This work attends to these vectors by focusing on two key elements: the game that codifies the scheme under attack, as well as its intended adversarial model; and the underlying interface that exposes secret key operations for use by the game. Our main security experiment considers the implications of using an interface (in practice, the API of a software library or a hardware platform such as TPM) to realize the scheme specified by the game when the interface is shared with other unspecified, insecure, or even malicious applications. After building up a definitional framework, we apply it to the analysis of two real-world schemes: the EdDSA signature algorithm and the Noise protocol framework. Both provide some degree of context separability, a design pattern for interfaces and their applications that aids in the deployment of secure protocols

    Security Analysis of the W3C Web Cryptography API

    Get PDF
    International audienceDue to the success of formal modeling of protocols such as TLS, there is a revival of interest in applying formal modeling to standardized APIs. We argue that formal modeling should happen as the standard is being developed (not afterwards) as it can detect complex or even simple attacks that the standardization group may not otherwise detect. As a case example of this, we discuss in detail the W3C Web Cryptography API. We demonstrate how a formal analysis of the API using the modeling language AVISPA with a SAT solver demonstrates that while the API has no errors in basic API operations and maintains its security properties for the most part, there are nonetheless attacks on secret key material due to how key wrapping and usages are implemented. Furthermore, there were a number of basic problems in terms of algorithm selection and a weakness that led to a padding attack. The results of this study led to the removal of algorithms before its completed standardization and the removal of the padding attack via normalization of error codes, although the key wrapping attack is still open. We expect this sort of formal methodology to be applied to new standardization efforts at the W3C such as the W3C Web Authentication API

    A Quantization Framework for Smoothed Analysis of {Euclidean} Optimization Problems

    No full text

    A Quantization Framework for Smoothed Analysis of {Euclidean} Optimization Problems

    No full text

    Subquadratic Algorithms for Succinct Stable Matching

    No full text

    The TAMARIN Prover for the Symbolic Analysis of Security Protocols

    No full text
    The Tamarin prover supports the automated, unbounded, symbolic analysis of security protocols. It features expressive languages for specifying protocols, adversary models, and properties, and support for efficient deduction and equational reasoning. We provide an overview of the tool and its applications
    corecore