
HAL Id: hal-01426852
https://hal.inria.fr/hal-01426852

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Security Analysis of the W3C Web Cryptography API
Kelsey Cairns, Harry Halpin, Graham Steel

To cite this version:
Kelsey Cairns, Harry Halpin, Graham Steel. Security Analysis of the W3C Web Cryptography API.
Proceedings of Security Standardisation Research (SSR), Dec 2017, Gaithersberg, United States.
pp.112 - 140, �10.1007/978-3-319-49100-4_5�. �hal-01426852�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/80457849?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-01426852
https://hal.archives-ouvertes.fr


Security Analysis of the W3C Web
Cryptography API

Kelsey Cairns1, Harry Halpin2, and Graham Steel3

1 Washington State University, PO Box 442 Seattle, WA 98194, USA
kelsey.cairns@email.wsu.edu
2 INRIA, 2 Simone Iff 75012,

Paris, France
harry.halpin@inria.fr

3 Cryptosense, 19 Boulevard Poissonnire 75022
Paris, France

graham@cryptosense.com

Abstract. Due to the success of formal modeling of protocols such as
TLS, there is a revival of interest in applying formal modeling to stan-
dardized APIs. We argue that formal modeling should happen as the
standard is being developed (not afterwards) as it can detect complex or
even simple attacks that the standardization group may not otherwise
detect. As a case example of this, we discuss in detail the W3C Web
Cryptography API. We demonstrate how a formal analysis of the API
using the modeling language AVISPA with a SAT solver demonstrates
that while the API has no errors in basic API operations and maintains
its security properties for the most part, there are nonetheless attacks
on secret key material due to how key wrapping and usages are imple-
mented. Furthermore, there were a number of basic problems in terms
of algorithm selection and a weakness that led to a padding attack. The
results of this study led to the removal of algorithms before its completed
standardization and the removal of the padding attack via normalization
of error codes, although the key wrapping attack is still open. We expect
this sort of formal methodology to be applied to new standardization
efforts at the W3C such as the W3C Web Authentication API.

1 Introduction

The World Wide Web Consortium (W3C) has commenced work on the Web
Cryptography API [3], which defines cryptographic primitives to be deployed
across browsers and native Javascript environments. This process has begun in
the W3C Web Cryptography Working Group, driven by all major browsers and
also open to the wider community.4 Started in 2012, the W3C Web Cryptography
Working Group is finalizing the standard for completion by the end of 2015, with
the design being led by Ryan Sleevi of Google with Mark Watson of Netflix as co-
editor. The API is already implemented across Chrome 37 and above (including

4 http://www.w3.org/2012/webcrypto/



Android), Mozilla version 36 and above, Opera 27 and above, Safari 8 and above,
and Internet Explorer 11 and Microsoft Edge. Thus, the W3C Web Cryptography
API is the primary Web-facing cryptography API for the foreseeable future.

Like any API, the Web Cryptography API (informally called the “WebCrypto
API”) needs an impartial and thorough analysis to determine its security prop-
erties. Cryptographic APIs, and even cryptographic libraries such as OpenSSL,
that have not received such an analysis until after widespread deployment have
resulted in dangerous security incidents in validating TLS certificates [20]. Given
that the W3C’s mission including security reviews, the W3C explicitly worked
with the larger community discover possible security vulnerabilities and for-
mally prove the guarantees that the Web Cryptography API could provide. Due
to an unfortunate tendency of Web developers to bring incorrect expectations
(brought from other environments) to Javascript and to (incorrectly) believe
that the Web Cryptography API ‘magically’ makes the Javascript browser en-
vironment a suitable platform for secure Web applications, it is important to
be able to state precisely the security properties of the Web Cryptography API
and what attacks are inherent in the API design as well as its operation in the
Javascript browser environment. In the future, these kinds of attacks need to
be mitigated so that the use of the Web Cryptography API matches intuitive
developer expectations around the use of security APIs.

Section 2 explains in detail the role of formal modeling. Section 3 overviews
existing background on Javascript cryptography, followed by relevant literature
describing the formal analysis of APIs and Web applications. In Section 4, we
describe the formal modeling of the Web Cryptography API using the AVISPA
language, and describe the experiments we used to verify various security prop-
erties in a number of scenarios, including a successful attack on key-wrapping
that can be generalized to attacks on key exchange. The behavior of key wrap-
ping and key usages in the API would seem to violate the expectations of most
developers who want to use the API. In Section 5 we discuss algorithm selec-
tion in the WebCrypto API, pointing out well-known errors in their algorithm
selection and error codes, and these problems were accepted and our proposed
fixes became part of the current WebCrypto API. In Section 6 we summarize
what properties future standards need to improve the security properties of the
Web Cryptography API in particular and the future application of formal API
modeling to new standardized APIs and protocols at the W3C.

2 The Role of Formal Modeling in Standardization

In the process of standardization, there is a desire to offer as much functionality
to developers as possible, while simultaneously preventing them from making
mistakes. In terms of cryptographic APIs like the WebCrypto API, this can lead
to handing the application developers a “kitchen sink” of cryptographic prim-
itives, which inadvertently may give a developer “enough rope to hang them-
selves.” Unlike protocols, APIs typically do not have precisely stated threat
models and security properties. This is a mistake, as security flaws at the API



level are automatically inherited by application that deploy the API and the
primitives provided by the API.

Although there is a reasonable argument to give developers only “high level”
APIs that may include suitable defaults, these APIs by nature must build on
“low level” APIs that provide access to a large range of cryptographic primitives
even if the “low level” API is not accessible or hidden from the developer. In
the Web Cryptography API, it was chosen to release the “low level” WebCrypto
API and not explicitly work on a “high level” cryptographic API or provide
defaults. While it seems that users will generally use the highest-level of ab-
straction available to them, the Working Group has decided that given that the
field of cryptography is in flux around issues such as elliptic curves and attacks
on RSA, it would be unwise to provide any defaults that may become outdated
in the standard. Instead, a ‘high-level’ API with appropriate defaults can be
created that would build from the primitives in the Web Cryptography API.

The process of standardization in the field of security needs to incorporate
formal methodology in order to state the security properties and discover at-
tacks before a standard is released. As security standardization is difficult due
to the complexity of maintaining security properties throughout the lifetime of
a standardization process, there is a clear use-case for formal modeling.

The general insight behind formal modeling is that the traditional method
of discovering new attacks on security APIs (and security protocols in general),
by being based on human insight, may miss important attacks. While a single
human may be able to discover by sheer insight an important attack, the state-
space of possible combinations of items such as keys, messages, cryptographic
primitives, and various desired properties may simply be difficult to discern
without the assistance of automated or semi-automated tools. Similar to the
automated discovery of proofs, the ideal automatic security checker would es-
sentially be a “machine attacker” that would try out an large number of attacks
using all possible combinations of cryptographic primitives and their parameters
over messages in all possible states. The general technique is the reduction of
maintaining security properties to a boolean satisfiability problem (SAT), where
a model-checker is used to see if the security properties hold via automatically
checking the property exhaustively (rather than theorem-proving) [18]. Although
the problem is well-known to be undecidable, efficient SAT solvers exist for large
classes of problem. Once a problem is detected via formal modeling, it may be
fixed in the standard before deployment. If the standard has already been im-
plemented, the flaw is usually then tested against real-world implementations,
hopefully to be fixed once the flaw is shown to be valid.

This approach of formal modeling has shown itself to be successful against
many already deployed protocols, in particular against TLS 1.2 [10]. Sometimes
attacks on standards incorporate errors in the choice of cryptographic primitives,
which are usually widespread in standardization as the time it takes to update.
While usually the choice of a vulnerable cryptographic primitives is easily dis-
covered, attacks on the protocol itself can be discovered years after the release



of the protocol [9] due to fundamental problems in the protocol such as the lack
of a well-defined state machine.

One area where formal modeling is just beginning to be applied to in stan-
dardization is in security API design. A security API consists of a set of functions
that are offered to some other program that uphold some security properties,
regardless of the program making the function calls and what functions are
called[13]. For example, one would hope that an API like PKCS#11 that pro-
vides access to key material in hardware tokens would prevent any private key
material from being tampered with, regardless of the application [17]. These
kinds of security properties are particularly critical in many applications, and
classically security APIs have been studied in the realm of hardware security
modules [13].

Early work did not use generalizable formal techniques, but customized each
technique for the API at hand [13]. Only more recently has fully automated
analysis in terms of model-checking and theorem-proving been deployed, usually
based on the Dolev-Yao (DY) abstract model where cryptographic primitives are
given as functions on bitstrings in an abstract algebra [19]. This methodology
has shown to be successful by its ability to compromise from non-standardized
solutions such as an authentication server and steal private keys from the Yu-
bikey USB hardware token [27]. Formal modeling has then be used to successfully
reveal a number of API-based attacks on standards, including the commercially
available tamper-resistant hardware security tokens PKCS#11 [17]. Currently, a
large number of security APIs are under process of standardization at the IETF
and W3C. Although formal modeling is not part of the current required security
review of protocols in the IETF and the optional security review of protocols in
the W3C, we believe it should be encouraged in the future as a mandatory part
of the security review before and after implementation.

3 Background

In Section 3.1 we give relevant background on Javascript Web Cryptography.
Section 3.2 reviews the existing academic literature on formal modeling that
serves as the basis of our work on the Web Cryptography API, as well as men-
tioning previous usages of formal modeling for security properties on the Web.
Section 3.3 summarizes the W3C Web Cryptography API (abbreviated as the
“Web Cryptography API”).

3.1 Javascript Cryptography

As an increasing number of applications transition to the Web, the need of
ordinary users to have more secure Web applications has increased and Web de-
velopers are attempting to match those expectations. Although there was initial
hostility to the idea of cryptography in Javascript as exemplified by “Javascript
Cryptography Considered Harmful,”5 there has nonetheless been widespread

5 http://matasano.com/articles/javascript-cryptography/



interest in creating secure Web applications[21]. Yet without the proper crypto-
graphic primitives working cross-browser, Javascript cryptography would indeed
be dangerous. For example, the the initial version of the ‘Crypto.cat’ encrypted
chat application initially not only recreated their own cryptographic routines
in Javascript but also deployed these Javascript libraries insecurely.6 In a re-
markable turn-around, Crypto.cat has since become the first formally verified
Javascript-based cryptographic application. Although a number of well-designed
Javascript cryptographic libraries exist such as the Stanford Javascript Crypto
Library[38], there are certain properties even the most well-designed Javascript
cryptography library presents, such as the problem of accessing the library it-
self securely. Although well-designed libraries can prevent this, common libraries
OpenPGP.js7 are vulnerable to side-channel attacks and critically use built-in
weak number generation given by default by Math.random.8 Furthermore, even
well-designed libraries that feature native Javascript password-based key deriva-
tion using algorithms such as PBKDF2 are still simply too slow for widespread
high security deployment (i.e. if a sufficient number of iterations are used). Af-
ter a public workshop in 2012,9 the W3C decided to create a cross-browser Web
Cryptography API that would offer a number of standardized, constant-time
primitives to be accessed by Web developers. This API does not address larger
concerns with the Web Security Model, such as cross-origin code injection (as
currently addressed by the Web Application Security Group10) and completely
trusted servers (i.e. Javascript as remote code execution), as well as problems
inherent in Javascript itself such as prototype inheritance and the lack of avail-
ability of efficient big integer operations.

3.2 Formal Modeling Literature Review

There is still no single dominant formal modeling language for modeling secu-
rity. Alloy [22], a language based on the Z specification language that uses SAT
solving, has been popular and used against APIs such as the Trusted Platform
Module 1.2 API [40]. It has recently been used for discovering security vulnerabil-
ities in Web applications, although it was not used to investigate the properties
of the Web Cryptography API[30]. Alloy is a well-developed framework that al-
lows infinite models. Scyther can work with an unbounded number of sessions
but does not allow the modeling of control flows [16]. ProVerif is a cryptographic
protocol verifier that works as a sequence of Horn clause and allows unbounded
verification on smaller protocols [11]. Tamarin also provides unbounded session
support with the required mutable global state [36].

6 https://crypto.cat/
7 http://openpgpjs.org/
8 See the results of the 2014 penetration testing report by Cure53.de available here:

https://cure53.de/pentest-report openpgpjs.pdf.
9 The workshop was called ‘Identity in the Browser,’ archived at

http://www.w3.org/2011/identity-ws/
10 https://www.w3.org/2011/webappsec/



AVISPA provides automatic validation and verification of security protocols
based on the DY formalism given by re-writing rules, where the knowledge of
the attacker can also be modeled using standard re-write rules rather than an
entirely different set of rules based on, for example, belief logic. AVISPA sup-
ports multiple model-checkers over bounded sessions, and features both high and
low-level formats for specifying protocols. Although unbounded sessions are of
interest for some scenarios, given that in our scenarios the Web application op-
erates over bounded sessions given the ephemeral nature of Javascript sessions
(with the exception of ‘cookies’). We chose AVISPA for our analysis since it takes
into account mutable global state shared between sessions, i.e. in particular keys
in a key store that have attributes that change over time and that affect the
execution semantics of protocols for operations such as signing and encryption
in an API.

Earlier work in formal analysis of the Web did conceptual work such as
dividing the attacker spaces of web attackers, who attack Javascript run-time
environments in the browser via cross-site scripting (XSS) attacks, from network
attackers who would attack the underlying TCP/IP connections between sites
and attack the certificate authority infrastructure [2]. More recent work has used
Proverif to model the properties of so-called “safe” cloud storage providers via
the Web [4], verifying subsets of Javascript [39], and interactive proofs of security
properties of Web applications [30]. However, none of these previous works were
aimed at the Web Cryptography API. This paper presents the first security
analysis and formal modeling of the Web Cryptography API.

3.3 W3C Web Cryptography API

The Web Cryptography API is a low-level API that exposes cryptographic func-
tionality via a number of components specified as a WebIDL. A WebIDL is a way
of specifying Javascript functions, although it may also in principle be bound
to programming languages outside Javascript.11 The main features of the Web
Cryptography API are as follows, with much more detail given in the specifica-
tion itself [3]:

1. RandomSource: Pseudorandom number generation.
2. CryptoKey : JSON object for key material.
3. CryptoOperation: Functions such as encryption and wrapping, along with

error codes.

RandomSource The RandomSource interface represents an interface to a cryp-
tographically strong pseudo-random number generator (PRNG). Implementa-
tions should generate cryptographically random values using well-established
cryptographic pseudo-random number generators seeded with high-quality en-
tropy. Currently it provides no lower-bound on the information theoretic entropy
present in cryptographically random values, but implementations should make a

11 http://www.w3.org/TR/WebIDL/.



best effort to provide as much entropy as practicable and may provide platform
or application specific entropy-related error messages.

CryptoKey The CryptoKey object represents an opaque reference to keying
material that is managed by the user agent. There are three types of keys: secret
keys (for symmetric encryption), public keys, and private keys (for asymmetric
encryption). Most importantly, the API does not expose key material itself, but
instead only pass handlers to the key material itself in Javascript and so access
to secret key material is forbidden. The only exception is when a key is explicitly
given a boolean extractable set to true and then exported (even then, it would
have the same-origin and structured clone properties). Keys that are not marked
explicitly as private, secret, or as non-extractable (i.e. extractable set to false)
will be accessible to the server with same-origin policy if key export is done. A
simplified (types not being given for all values) Javascript WebIDL interface for
CryptoKeys is given in Figure 1.

KeyType { public, private, secret };

KeyUsage { encrypt, decrypt, sign, verify,

deriveKey, deriveBits, wrapKey, unwrapKey };

CryptoKey { KeyType type; boolean extractable;

object algorithm; object usages; };

Fig. 1. CryptoKey WebIDL

In the Web Cryptography API, we use the structured clone algorithm to
store keys.12 This algorithm is an abstraction on top of existing Web storage
mechanisms such as IndexedDB13 that has the same lifetime guarantees as the
rest of Web storage. This would allow a user to clear their key material at the
same time they ‘wipe’ cookies from their browser storage. So keys are restricted
to the same origin policy in storage and are essentially ephemeral as they can
be removed when session state is cleared.

CryptoOperation The CryptoOperation is the heart of every cryptographic
primitive. Given a algorithm and a set of parameters (usually including a handler
to a key), the CryptoOperation will attempt to commit some operation. Every
CryptoOperation can be thought of as a named finite state machine with an
internal state, an associated algorithm, an internal count of available bytes, and
a list of pending data. Every member of the list of pending data represents data

12 See https://developer.mozilla.org/en-US/docs/DOM.
13 See http://www.w3.org/TR/IndexedDB/



that should undergo the associated cryptographic transformation if the operation
as a whole is successful. The order of items when added to the list is preserved
in processing, so that the first data that is added being the data processed.
If the cryptographic operation fails (such as when the key type is wrong or
when the algorithm is not supported), the CryptoOperation then terminates and
produces an error code. A simplified (no types) Javascript WebIDL interface for
CryptoOperations is given in Figure 2. Each algorithm then gives support for a
number of operations as given in Table 1.

encrypt(algorithm, key, data);

decrypt(algorithm, key, data);

sign(algorithm, key, data);

verify(algorithm, key, signature, data);

digest(algorithm, data);

generateKey(algorithm, extractable, keyUsages );

deriveKey(algorithm, baseKey, derivedKeyType,

extractable, keyUsages );

deriveBits(algorithm, baseKey, length);

importKey(format, keyData, algorithm,

extractable, keyUsages );

exportKey(format, key);

wrapKey(format, key,wrappingKey, wrapAlgorithm);

unwrapKey(format, wrappedKey, unwrappingKey,

unwrapAlgorithm, unwrappedKeyAlgorithm,

extractable, keyUsages);

Fig. 2. CryptoOperation WebIDL

Supported Algorithms Each algorithm type is given by the CryptoOpera-
tion and the key generation. Keys generated with particular algorithms thus can
have their usages restricted to only those CryptoOperations permitted by the
algorithm. We expect the Web Cryptography Working Group to be maintained
over the long-term by the W3C, any requests for new algorithms can be sent
to the Working Group for consideration and discussion with implementers. As
the API is meant to be extensible in order to keep up with future developments
within cryptography and to provide flexibility, there are no strictly required al-
gorithms. However, in order to promote interoperability for developers, there are
a number of algorithms that the API supports by default: RSA-PSS, RSASSA-
PKCS1-v1 5, RSA-OAEP, ECDSA, AES-CTR, AES-CMAC, AES-CFB, AES-
KW, AES-CBC, HMAC, PKCS-v3 Diffie-Hellman (DH), the SHA family, CON-
CAT, HKDF-CTR, and PBKDF2. These will be tested in the test-suite of the
Web Cryptography API so developers will be able to easily ascertain with cer-
tainty if they can use these operations across browsers.



var algorithmKeyGen = {

name: "RSA-PSS",

modulusLength: 2048,

publicExponent: new Uint8Array([0x01, 0x00, 0x01]),

};

var algorithmSign = {

name: "RSA-PSS",

saltLength: 32,

hash: {

name: "SHA-256"

}

};

window.crypto.subtle.generateKey(algorithmKeyGen, false, ["sign","verify"]).then(

function(key) {

var dataPart1 = convertPlainTextToArrayBufferView("hello,");

var dataPart2 = convertPlainTextToArrayBufferView(" world!");

return window.crypto.subtle.sign(algorithmSign, key.privateKey)

.process(dataPart1)

.process(dataPart2)

.finish();

},

console.error.bind(console, "Unable to generate a key")

).then(

console.log.bind(console, "The signature is: "),

console.error.bind(console, "Unable to sign")

);

Fig. 3. Public Key Signature Example

Examples may clarify the usage of the API. An example generate a signing
key pair and sign some data is given in Figure 3. More examples, including
symmetric key encryption, are given in the specification [3].

4 Formal Analysis

4.1 Threat Model

The threat model needs to be realistic in terms of actual attacks on the Web,
and not too powerful. If we assume the origin is completely untrusted or com-
promised by an attacker, then the attacker can easily steal the application’s
secrets directly before they are encrypted. Thus, we assume the origin is trusted
when the WebCrypto API is initialized and secrets are successfully encrypted
and stored on the client.

Our threat model is then a temporary compromise of the Javascript envi-
ronment being used by the server or client after secrets have been encrypted



Algorithm encrypt decrypt sign verify digest generateKey deriveKey deriveBits importKey exportKey wrapKey unwrapKey

RSAES-PKCS1-v1 5 • • • • • • •
ECDSA • • • • •

RSASSA-PKCS-v1 5 • • • • •
RSA-PSS • • • • •

RSA-OAEP • • • • • • •
ECDSA • • • • •
ECDH • • • • •

AES-CTR • • • • • • •
AES-CBC • • • • • • •

AES-CMAC • • • • •
AES-GCM • • • • • • •
AES-CFB • • • • • • •
AES-KW • • • • •

HMAC • • • • •
DH • • • • •

SHA-1 •
SHA-256 •
SHA-384 •
SHA-512 •
CONCAT • • •

HKDF-CTR • • •
PBKDF2 • • • •

Table 1. CryptoOperations per Algorithm

by WebCrypto and stored on the client. This accurately models most cross-site
scripting (XSS) attacks on the Web, including DOM-based attacks on the client
and temporary compromises of Javascript delivered by the server.

The security property that we want to maintain is that access to the raw key
material that is private, secret, or explicitly typed as non-extractable should not
be accessible to Javascript. These keys should only be accessible to a server with
same-origin policy if key export is explicitly done to extractable key material.

The goal of the attacker is to retrieve previously encrypted secrets. This
threat model’s assumptions are built into our formalization, as seen from the
rule definitions in Figure 4. The inputs and outputs to each rule are either
known by the attacker or stored on the client device.

4.2 Model

The models we used were constructed using the AVISPA toolset,14 which was
built to enable easy translation from protocol to model. The AVISPA toolset
forms a hierarchical set of languages which take in a high-level protocol descrip-
tion and translate it through a series of steps to a low level description that func-
tions as input to a model checking engine. Since AVISPA’s high level language is
tailored towards protocols and not API’s, we designed our models in AVISPA’s
intermediate format (IF). AVISPA’s IF format describes protocols modeled as
an infinite state machine whose semantics is given via set re-writing.15 Proto-
cols are described unambiguously by sets of typed predicates which define states
and rules which define state transitions. For example a predicate might take the
following form:

14 http://www.avispa-project.org/
15 The formal semantics of AVISPA’s higher-level HLPSL that subsumes IF are out of

scope but are given here: http://www.avispa-project.org/delivs/2.1/d2-1.pdf.



keystore(K) : key → fact

Which represents a fact-type predicate relating to a variable K of type key.
States are defined by a list of applicable predicates. Transition rules take the
form of having a list of predicates on the left hand side which must be true
for the transition to occur. The right hand side lists predicates which are true
following the transition. The following shows an example rule which models en-
cryption:16

do encrypt(M,K) :=
private data(M) ∧ keystore(K)
⇒ private data(scrypt(K,M))

Initial states are described by declaring initial terms and predicates on them.
Lowercase letters are used to represent instantiated terms. Uppercase letters de-
note free terms that may be bound to instance of the same type.

k,K : key
m,M : message

Initial predicates use instantiated terms:

private data(m)
keystore(k)

This example would initialize a state machine with the predicates keystore(k)
and private data(m). The do encrypt rule is applicable when M = m and
K = k.

AVISPA assumes an attacker following the standard DY model (where the
attacker is called the “intruder”) and is represented functionally by an iknows
predicate which dictates information known to the attacker. Further, the attacker
has basic cryptographic capabilities. For example, the following rules would be
applicable to the attacker independently of the modeled protocol:

i encrypt(M,K) :=
iknows(M) ∧ iknows(K)
⇒ iknows(scrypt(K,M))

i decrypt(M,K) :=
iknows(scrypt(K,M)) ∧ iknows(K)

16 Throughout this paper we omit many AVISPA-specific constructs in order to focus
on the underlying model. This includes statements that are necessary for modeling
protocols but not APIs, but will nonetheless cause errors if omitted. The complete
rules are available here: http://www.w3.org/2012/webcrypto/webcrypto if files.tgz



⇒ iknows(M)

Consistent with the DY model, information communicated over the channel
between actors is predicated with iknows. Thus, inputs to rules may be attacker
created values and outputs are assumed to be learned to the by the attacker.
This paradigm allows us to model compromised Javascript, where inputs may
come from any source and outputs may be sent anywhere. The only state ac-
cessible to the API is the keys stored on the host, which we modeled with a
keystore predicate. The attacker in this model uses keys stored on the host. Our
API rules use iknows or keystore to predicate inputs:

api encrypt(M,K) :=
iknows(M) ∧ keystore(K)
⇒ iknows(scrypt(K,M))

The attacker goal states specify the conditions of a successful attack. For ex-
ample, an attacker goal when testing confidentiality would be defined as a state
in which both the iknows predicate applies to a variable already declared secret
by the secret predicate, for example:

Goal: secrecy(M) := iknows(M) ∧ secret(M)

4.3 API Model

To test properties of the API, we built a general API model which we then varied
slightly to perform different tests. Creation of the general model includes custom
predicates, transition rules representing API calls, and handling of key objects.
The API call transition rules are built from both AVISPA’s default predicates
(crypt, scrypt, iknows, etc.) and custom predicates. The modeling for each rule
is described in Figure 4.

In addition to AVISPA’s default predicates, several custom predicates were
necessary to handle the modeling of key objects. The actual CryptoKey objects
associates raw key data and the following set of attributes:

Type Public, private or secret (symmetric)

Extractable A boolean specifying whether the
key material may be exported to
Javascript

Algorithm The algorithm used to create the key

Usages attributes which specify the key’s al-
lowed operations

Our modeled CryptoKey objects only represent the parts of the actual Cryp-
toKey object. For efficiency reasons, our model expresses keys as (type, value)
pairs. A key’s attributes (extractable, usages) are represented by inclusion of that
key in a set representing the particular attribute. For example, all keys with the



encrypt usages are contained in a set named Javascript encrypt. We ignore the
algorithm attribute in our model.

Each entity is associated with a store of keys known to that entity. Each
WebCrypto operation requires that the keys it will use be present in its associated
entity’s key store. Some operations (generate, import,unwrap) will add a key to
the key store.

WebCrypto calls were translated directly into transition rules for our model.
The predicates used are a combination of AVISPA defined (crypt, scrypt, iknows,
etc.) and some that were specifically defined for this model. The predicates we
defined are:

keystore(K,T ): key is stored in local storage

extract(K): in extractable set

usages(K): all usages apply to key

xUsage(K): usage x applies to key

sym(T ): key type is symmetric

pub(T ): key type is public

priv(T ): key type is private

Modeling Specific Scenarios Each individual scenario was created by cus-
tomizing the models initial state and attack goal. After this step is done, the
discovery of attacks is then fully automated by AVISPA. Some scenarios also
included additional transition rules which allow more control over the behav-
ior of the model. The additional rules serve as “unit operations” for each sce-
nario. These operations model the equivalent of a sequence of individual API
operations. Building unit operations for each test had two advantages. First,
it optimizes the number of steps needed by the model checker in order to find
attack sequences that include this sequence of steps. Second, constraints can be
added to the model which require any found attack sequences to contain these
operations. This allows modeling a scenario with the requirement that either
the server or client fulfilled their role properly. A large number of scenarios were
formalized, building up from simple to more complex in terms of properties by
the use of these unit operations.

As an example, we look at the model used to check confidentiality of wrapped
key exchange messages sent from client to server. This model is initialized with
three key objects. The intent is to model two keys that belong to the client: one
(swkey) for wrapping and the other (skey) to be exchanged securely. The third
(ikey) key is known to the attacker and can be used in whatever way aids the
attacker:

Instance Variables: skey, swkey, ikey : key
st, iwt, it : type

Initial State: sym(st) ∧ secret(skey) ∧ secret(swkey)
∧ keystore(skey, st) ∧ keystore(swkey, swt)



∧ keystore(ikey) ∧ usages(ikey)
∧ iknows(ikey) ∧ extract(skey)
∧ wrapUsage(swkey) ∧ unwrapUsage(skey)

The predicates in the initial state describe the properties of the keys using
the predicates as described earlier. The goal state for this case was described by:

Goal: secrecy(K) : secret(K) ∧ iknows(K)

This goal specifies that for some variable key K, K has been defined to be
both secret and known by the attacker. This goal was trivially achieved be-
cause extract(skey) lets a secret key be marked as extractable which allows the
attacker to export skey and learn its value.

To force the model to find attack sequences that show how export attacks can
effect operations such as key exchange with the key being explicitly extractable
(as would be the case with secret key material by default), we modified our
model slightly. First, we remove extract(skey) from the initial state. Next we
added a c send() unit operation which wraps and sends a key without requiring
either keys to be extractable:

c send(key K, type T, key WK, type WT ) :
keystore(K,T ) ∧ wrapUsage(K) ∧ keystore(WK,WT )
⇒ iknows({WK}K) ∧ has sent(K) ∧ has sent(WK)

The has sent fact is used to force this rule to be used. This is accomplished
by modifying the goal state to be require that has sent(K) be true, which can
only happen after the c send rule is used:

Goal: secrecy(K) : secret(K) ∧ iknows(K) ∧ has sent(K)

The attack found by the model checker for this set of modification is discussed
in Section 4.4.

4.4 Tests and Results

We tested security properties by systematically modeling different use cases and
assessing the resulting attacks. The attacks we found existed due to potentially
unintuitive traits of the API, which would have negative security implications if
misunderstood by a large audience. The interesting attacks fell into two types:

– Export Attack: Exporting extractable key data and changing usages.
– API Attacks: Using client API calls to recover clear text of encrypted

communication via an attack on key wrapping.

To summarize, our analysis found that keys managed by the API, if wrapped
and then unwrapped, then lose their usage properties. In particular this can



generateKey(key K, type T ) :

→ keystore(K,T ) ∧ usages(K,T ) ∧ extractable(K,T )

importKey(key K, type T ) :

iknows(K)

→ keystore(K,T ) ∧ usages(K,T ) ∧ extract(K,T )

extractkey(key K, type T ) :

keystore(K,T ) ∧ extract(K,T )

→ iknows(K,T )

encrypt(key K, type T,message M) :

keystore(K,T ) ∧ encryptUsage(K) ∧ pub(T )

→ iknows(crypt(K,M))

sencrypt(key K, type T,message M) :

keystore(K,T ) ∧ encryptUsage(K) ∧ sym(T )

→ iknows(scrypt(K,M))

decrypt(key K, type T,message M) :

keystore(K,T ) ∧ decryptUsage(K) ∧ iknows(crypt(K,M)) ∧ priv(T )

→ iknows(M)

sdecrypt(key K, type T,message M) :

keystore(K,T ) ∧ decryptUsage(K) ∧ iknows(scrypt(K,M)) ∧ sym(T )

→ iknows(M)

sign(key K, type T,message M) :

keystore(K,T ) ∧ signUsage(K) ∧ priv(T )

→ iknows(crypt(K,M))

verify(key K, type T,message M) :

keystore(K,T ) ∧ verifyUsage(K) ∧ iknows(crypt(K,M)) ∧ pub(T )

→ iknows(M)

wrap(key K, type T, key WK) :

keystore(K,T ) ∧ wrapUsage(K) ∧ pub(T ) ∧ keystore(WK) ∧ extract(WK)

→ iknows(crypt(K,WK))

swrap(key K, type T, key WK) :

keystore(K,T ) ∧ wrapUsage(K) ∧ sym(T ) ∧ keystore(WK) ∧ extract(WK)

→ iknows(scrypt(K,WK))

unwrap(key K, type T, key WK, type WT ) :

keystore(K,T ) ∧ unwrapUsage(K) ∧ iknows(crypt(K,WK)) ∧ priv(T )

→ keystore(WK,WT ) ∧ extract(WK) ∧ usages(WK)

sunwrap(key K, type T, key WK, type WT ) :

keystore(K,T ) ∧ unwrapUsage(K) ∧ iknows(scrypt(K,WK)) ∧ sym(T )

→ keystore(WK,WT ) ∧ extract(WK) ∧ usages(WK)

Fig. 4. Model for each API call. Note that all usages are allowed for created and
imported keys, simplifying the model and giving the advantage to the attacker.



be used to subvert operations such as key exchange and so reveal private key
material.

Export Attack While unextractable keys are appear safe, our attack shows
there are no safeguards in place to preserve the usage attributes on extractable
keys. Furthermore, any wrapped key can be unwrapped and then given arbitrary
usage attributes. Thus, there is no guarantee that a key transmitted by wrapping
will be used with the intended usages.

The test that revealed this property was modeled with a client initialized
with two symmetric keys. One was an unextractable key with the wrap and un-
wrap usage enabled. The other key was extractable but had no usages enabled.
The initial state and goal state are given below, where skey is the secret key and
ikey is the key being under possession of the attacker (note that i is used as the
“attacker” is called “the intruder” in AVISPA):

Instance Variables: key, ikey : key
st : type

Initial State: sym(skey) ∧ sym(ikey)
∧ keystore(skey, st) ∧ keystore(ikey, st)
∧ extract(skey) ∧ usages(ikey)

Goal: addUsage() : encryptUsage(skey)

Not only the encrypt usage, but all usages could be added simply by wrapping
and unwrapping the extractable key: wrap(skey, ikey), unwrap(skey, ikey). This
simple single-host attack extends to wrapped keys transmitted between multiple
hosts, and demonstrates the lack of control over usages: Once a key has been
wrapped, the original usages with which it was created are lost, and new usages,
as well as the choice to designate a key extractable, can be added during the
unwrap operation.

Key Exchange API Attacks The test case in 4.4 revealed the lack of key
attribute preservation, and an attacker can be successful in deploying this strat-
egy to reveal secret key material in key exchange and message passing protocols
that use the WebCrypto API. A set of experiments, also done with the AVISPA
model, involved keys sent between a client and server using various combinations
of authentication and key wrapping.

Enumerating these cases also gives us insight into the security of general
message exchanges based on WebCrypto: As key wrapping is a composition
of export and encrypt, if an attack existed on a wrapped key, then the same
attack would apply to an encrypted message. The combinations of encryption
and authentication our model discovered compromises in are:



Symmetric encryption – The sender wraps the key using a symmetric key
shared with the receiver who unwraps the key

Asymmetric encryption – The sender wraps the key using public key for
the receiver who unwraps with the corresponding private key

Symmetric encryption with asymmetric signing – The symmetric encryp-
tion case augmented by signing with the sender’s private key

Asymmetric encryption with asymmetric signing – The asymmetric en-
cryption case augmented by signing with the sender’s private key

Each test was initialized with enough keys to allow the client and server’s task
to be modeled as well as the attacker. We modeled multiple versions of each sce-
nario: one matching the current API specification and a second restricted version
designed to show changes that could reduce attacks. The attacks are described
in a number of tables. Operations in the attack sequences are prepended with
an identifier specifying the entity that performed the operation: ijs- malicious
Javascript controlled by the attacker, i- the attacker, c- the client Javascript
running honestly, and s- the honest server.

Table 2 shows attacks found by testing confidentiality of keys sent from client
to server. A successful attack involves the attacker learning a key that was also
defined as secret. In the cases using symmetric encryption, the basic model used a
symmetric wrapping key that had both wrap and unwrap usages enabled. These
cases allowed API attacks where the secret key was unwrapped and given export
privileges and then extracted. The restricted cases were modeled by removing
the unwrap usage from the client’s wrapping key, which removed this attack
as well as the export attack on the key. The asymmetric case did allow export
attacks but not API attacks.

Table 3 covers confidentiality attacks but this time for keys sent from server
to client. In these scenarios all base cases were susceptible to an API attack
which caused the key received from the server to be imported as extractable and
then immediately exported. No modifications were found which prevented this
attack.

Table 4 shows integrity attacks on the same set of scenarios as Table 2. The
successful attack was modeled as a key, originally known only to the attacker,
being stored in the server’s key store. For most cases, both symmetric and asym-
metric, API attacks allowed an attacker to send a key to the server by importing
that key into the client and using API calls to wrap and possibly sign the key.
The only modification we found preventing this attack was to disallow use of
one of the keys, but this may not be practical in real world use cases.

The integrity attacks shown in Table 5 on keys sent from server to client yield
fewer API attacks. API attacks exist for the cases where the attacker has access
to the wrapping key. This is the symmetric case where the client’s key has wrap
and unwrap usages as well as the asymmetric case where the encryption key is
public by default. With authentication required, no API attacks were found.

These results lead to a few general observations. Export attacks are often
available because keys that can be wrapped are also then extractable; any key
that can be exported from the client can be retrieved in the clear by an attacker



even though the wrapping is intended to keep the key secret. The found API
attacks have a common element of using a key stored on the client to perform
cryptographic operations. Some of these attacks are caused by the fact that the
extractable attribute and usages array are not preserved for wrapped keys, and
unwrapped keys can be given any new combination of attributes, including ex-
tractable. Other attacks could be mitigated by limiting the usability of stored
keys. For example in the symmetric encryption case, if one key is used for both
directions, the attacker can use the client’s keys to both encrypt and decrypt
the communication. However, using distinct keys for each direction of communi-
cation and reinforcing this behavior with usages attributes prevents this type of
attack assuming the usages are not changed. Thus, the successful API attacks
could be prevented if usages were bound to key material in general and not
allowed to be altered while the key is being stored. Lastly, authenticating via
asymmetric keys where extractability of key material is not allowed prevents the
attacks on confidentiality and integrity of keys from the server to the client.

Table 2. Client → Server confidentiality attacks

Scenario Export API

Symmetric Encryption

Single key for wrap and unwrap Yes c-send, ijs-unwrap, ijs-
extractKey

Different key for each direction Yes None

Asymmetric Encryption

No Restrictions Yes None

No key extraction None None

Symmetric Encryption with Asymmetric Authentication

No Restrictions Yes c-send, i-verify, ijs-unwrap,
ijs-extractKey

Client wrapping key cannot unwrap None None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions Yes None

No key extraction None None

5 Algorithm-level Analysis

In our formal analysis, we treated algorithms as “black boxes” in the analysis of
cryptographic primitives. This is because some of the attacks on security APIs
are beyond the scope of the DY model employed by AVISPA. For example, formal
models do not in general deal with attacks like oracle attacks that observe the
error messages that are returned by the API. Furthermore, some algorithms have
well-known weaknesses.



Table 3. Server → Client confidentiality attacks

Scenario API

Symmetric Encryption

No Restrictions s-send, ijs-unwrap, ijs-extractKey

Different keys for wrap and unwrap s-send, s-unwrap, s-extractKey

Asymmetric Encryption

No Restrictions s-send, ijs-unwrap, ijs-extractKey

Different keys for wrap and unwrap s-send, s-unwrap, s-extractKey

Symmetric Encryption with Asymmetric Authentication

No Restrictions s-send, i-verify, ijs-unwrap, ijs-extractKey

Asymmetric Encryption with Asymmetric Authentication

No Restrictions s-send, i-verify, ijs-unwrap, ijs-extractKey

Table 4. Client → Server integrity attacks

Scenario API

Symmetric Encryption

Single key for wrap and unwrap ijs-importKey, ijs-wrap, s-receive

Different key for each direction ijs-importKey, ijs-wrap, s-receive

Asymmetric Encryption

No Restrictions ijs-encrypt, s-receive

Signing key removed before mali-
cious code runs

None

Symmetric Encryption with Asymmetric Authentication

No Restrictions ijs-importKey, ijs-wrap, ijs-sign, s-receive

Client wrapping key cannot unwrap None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions ijs-importKey, ijs-wrap, ijs-sign, s-receive

Signing key removed before mali-
cious code runs

None



Table 5. Server → Client integrity attacks.

Scenario API

Symmetric Encryption

Same key for wrap and unwrap ijs-importKey, ijs-wrap, c-receive

Different keys for wrap and unwrap None

Asymmetric Encryption

No Restrictions i-wrap, c-receive

Symmetric Encryption with Asymmetric Authentication

No Restrictions None

Asymmetric Encryption with Asymmetric Authentication

No Restrictions None

In this review, we limit ourselves to peer-reviewed results on the algorithms
which have been included in the the first Candidate Recommendation version
of the WebCrypto API, although the precise algorithms are still in flux due to
interoperability testing. Table 5 summarizes the results. Although none of these
results or attacks are new in terms of cryptanalysis, the fact that they were
present in the WebCrypto API should be explicitly noted. After this analysis,
RSAES-PKCS1-v1 5 was removed from the specification and the problems with
padding error return codes were corrected.

There is at least one annual publication, the ENISA “Algorithms, Key Size
and Parameters Report,” whose aim is to track ongoing developments, which
discusses a much larger set of algorithms in much greater depth. Our results are
in general the same except for algorithms ENISA does not cover like PBKDF2
and AES-KW [37].17 We note that HKDF has security proofs [26] but needs
more study. Security models for password-based key derivation functions are
still in a state of flux [42]. PBKDF2 has known weaknesses[43], and many im-
plementations do not use enough iterations.

In detail, the main problematic algorithm originally included in WebCrypto
was RSAES-PKCS1-v1 5, which has been known to be vulnerable to a chosen
ciphertext attack (CCA) since 1998 [12]. The attack has recently been improved
to require a median of less than 15 000 chosen ciphertexts on the standard oracle
[5]. Instances of the attack in widely-deployed real-world systems continue to be
found [23]. Finally, note also that as of version 1.3, RSAES-PKCS1-v1 5 will
be dropped from the TLS standard.18 In terms of alternatives, there are no
publicly known attacks on RSASSA-PKCS1-v1 5 but no security proofs and
no advantages compared to other RSA-based schemes, while RSA-PSS has a
security proof due to Bellare and Rogaway [8] in the random oracle model.

There are also some inevitable issues with elliptic curve cryptography, which
is in an ongoing state of flux in both WebCrypto and wider internet standards. In

17 Note as of September 2016, the 2014 report is currently under revision.
18 http://www.ietf.org/mail-archive/web/tls/current/msg12362.html



Table 6. Algorithm Summary

Algorithm/Mode Ok legacy Ok future Note

RSAES-PKCS1-v1 5 × ×
RSA-OAEP X X

RSASSA-PKCS1-v1 5 X × No security proof

RSA-PSS X X

ECDSA X × Weak provable security results

ECDH X X

AES-CBC X X NB not CCA secure

AES-CFB X X NB not CCA secure

AES-CTR X X NB not CCA secure

AES-GCM X X

AES-CMAC X X

AES-KW X × No public security proof

HMAC X X

DH X X

SHA-1 × × See text

SHA-256 X X

SHA-384 X X

SHA-512 X X

CONCAT X X

HKDF-CTR X X

PBKDF2 X × Known weaknesses (see text)



particular, ECDSA has some provable security results but only in weak models
[37]. There is debate of elliptic curves.19 ECDH has provable security results [14],
but like other plain DH modes it offers no authenticity, so this must be handled
separately. A proposal exists to include Curve25519 [32] after the browsers are
finished implementing the CFRG recommendations. In general, we recommend
using only named curves with wide public review.

In terms of AES, there are well-known issues with AES-CBC mode that
are not currently believed to pose a practical threat [25], and it is not CCA se-
cure. Both AES-CBC and AES-CFB are secure against chosen plaintext attacks
(CPA-secure) if the IV is random, but not if the IV is a nonce [35]. In particular
AES-CFB does not tolerate a padding oracle [41] - indeed, in practice, padding
oracle attacks are common [31, 29, 33]. The padding mode [24] is exactly that
which gives rise to most of these attacks. AES-KW has received various criti-
cisms, for example being inconsistent in its notions of security (requiring IND-
CCA from a deterministic mode), but though it has no public security proof, it
has no known attacks either [34]. AES-CTR is probably the best mode of the tra-
ditional AES modes, although the mode is easy to mis-use and thus in general
AES-GCM should be preferred (ideally with an explicit safeguard to prevent
re-usage of the IV). Since WebCrypto does not contain guidance on composing
AES modes with a MAC and does not prevent the re-usage of an IV, care needs
to be taken by developers.

Due to the inclusion of AES-CBC and the consideration of RSAES-PKCS1-
v1.5, padding attacks against these protocols would be a threat to both encrypted
messages and wrapped keys in WebCrypto. Table 7 explains how these vulner-
abilities manifest themselves in the Webcrypto API. After these attacks were
discussed with the W3C Web Cryptography Working Group due to the analysis
presented in this paper, RSAES-PKCS1-v1 5 had its support removed from the
W3C Web Cryptography specification. Also, errors that could lead to attacks
on AES-CBC wrapped keys, such as DataError, were removed from the spec
where necessary and replaced with OperationError that could not distinguish
between a key and padding operation. This should be considered a good exam-
ple of a standards-based Working Group working well with knowledge from the
cryptographic community.

5.1 AES-CBC Wrapped Keys

It is worth noting that despite the API’s resistance to padding attacks against
AES-CBC wrapped keys, this vulnerability could easily emerge through imple-
mentation errors or misuse of the API. To guard against implementation errors,
we recommend the following checks:

– All errors caused by improper padding or incorrect key length/formatting
are indistinguishable. (Padding errors will be returned from a different sub-
routine than the other errors and be discovered first, so any information
about the source of the error is potentially a distinguishing factor.)

19 http://safecurves.cr.yp.to/



Table 7. Explanation of Padding Attacks

Attacking Encrypted Text Attacking Wrapped Keys

PKCS1-v1.5 Potential Attack – PKCS1-v1.5
padding is susceptible to known or-
acle attacks when an attacker can
discern that decryption failed due
to incorrect padding. The API spec-
ifies that failure to decrypt should
result in a OperationError. Causes
of this failure are incorrect padding
(either incorrect leading bytes or
not enough padding) and a cipher
text that is out of range of the
RSA modulus. (The latter can be
prevented in the attack.) These
are the only possible causes of the
OperationError from PKCS1-v1.5
decryption, leading to the possibil-
ity that a decryption oracle is ex-
posed to the attacker.

Potential Attack – Similarly
to the attack against encryption,
the error given when unwrapping
an incorrectly padded key is an
OperationError. However, the er-
ror that results from a correctly
padded but incorrectly formatted
key (which would be used in the at-
tack) is a DataError. If the differ-
ence in errors in not concealed from
attackers, an attack would be able
to recover wrapped keys.

AES-CBC Potential Attack – AES-CBC is
known to be susceptible to padding
oracle attacks when an attacker
can discern that a particular cipher
text cannot be decrypted due to
a padding error. The API speci-
fies that this error is a DataError.
The only other source of this er-
ror during the decrypt operation
is an incorrect initialization vec-
tor length, which the attacker could
check given access to the IV.

No Obvious Attack – A success-
ful attack requires the ability to dif-
ferentiate between keys that cannot
be unwrapped due to 1) incorrect
padding and 2) incorrect key length
or structure that cannot be parsed.
In both cases, the error specified by
the API is the same and no other
test is apparent to distinguish be-
tween the two.



– Lengths of unwrapped keys are verified to match one of the predefined key
lengths.

– All bytes of padding are checked for conformance.

Of these three recommendations, the first was accepted in to the specification.
Additionally, the the specific key lengths reduce the search space of a brute force
attack against 192 and 256 bit keys. Unwrapping a 256 bit key as if it was 192
bits requires guessing only the 64 bits that need to be (wrongly) interpreted as
padding for unwrapping to be successful. Thus the problem is reduced to finding
a 192 bit key. These, in turn, require guessing another 64 bits in order to be
unwrapped as if they were 128 bit keys. From there, the problem is equivalent
finding a 128 bit key. Thus, brute forcing 192 and 256 bit keys takes at most
2128 + 264 and 2128 + 265 guesses respectively, which is less than the traditional
brute force attack. Lastly, it should be mentioned that if the attacker is given an
oracle that uses the decrypt operation instead of the unwrap operation with the
same key used for wrapping, a standard padding attack may be able to recover
wrapped keys.

5.2 High-level API Recommendations

Although the API does not provide “safe” defaults, the IRTF CFRG (CryptoFo-
rum Research Group) created a document to track known security flaws, attacks,
and the status of formal security proofs for each algorithm in the API.20 From
our analysis, it is quite clear what the recommend modes should be in general
for a developer-friendly “high-level” API that also automatically took care of IV
vector initialization and other parameters. For RSA-based algorithms, RSA-PSS
should be used for signing and verification while RSA-OAEP should be used for
encryption and decryption. It is likely that Curve 25519 support should be added.
Standardised by NIST, AES-GCM is gaining traction in standards such as IPsec,
MACSec, P1619.1, and TLS [35]. Regarding DH, more protocols are now favor-
ing ECDH as attacks against “weak” standard Diffie-Hellman groups are not
as powerful against elliptic curves due to a loss of a clear precomputation-based
advantage [1]. HMAC has well-studied security proofs, even if the underlying
hash function is not (weak) collision resistant [7]. In terms of hashing functions,
of course SHA-2 is to be preferred due to the amount of increased feasibility of
practical methods of obtaining collisions for SHA-1.21 As regard key size, in-line
with NIST and ENISA [37], larger key sizes should be preferred such as RSA
keys of at least 2048 bits and 256 bits for symmetric keys and elliptic curve
cryptography.

20 https://www.w3.org/2012/webcrypto/draft-irtf-cfrg-webcrypto-algorithms-01.html
21 https://sites.google.com/site/itstheshappening/



6 Conclusions

6.1 Fixing the Web Cryptography API

In summary, the Web Cryptography API had three attacks, of which only one
still stands. The attack that is still present is that the usages of keys are not
preserved upon export that can be exploited in numerous ways to reveal not
only wrapped secret key material sent from between the client and server but
also disrupt authenticated key exchange. A number of simple mitigations would
prevent this attack. The most general solution would be to prevent usages from
being changed, but this binds key usages to a key throughout its lifespan. A
more limited mitigation that would address only the unique case of wrapping
would be to have key wrapping require that the properties of a wrapped and
then unwrapped key be preserved, and not require the export of the wrapped
key before wrapping. Wrapping could be done outside the general Javascript
environment and only the wrapped key material exposed. One way to implement
this option would be to inherit the property of being unextractable from the
wrapping key to the wrapped key by default. Another more restrictive option
would be to prevent wrapping and unwrapping. Earlier errors involving padding
attacks being made possible due to error types were corrected, and the RSAES−
PKCS1 − v1 5 algorithm was correctly removed from the specification due to
the analysis presented in this paper. However, the API does not suffer from the
fatal errors in its key management that can be detected via formal modeling,
such as PKCS#11[17] or the Yubikey [27].

In detail, the handling of key attributes in the API does not create a clear in-
tuition about their actual effect as the usages may not always be supported, and
so will confuse developers about key management across the boundary between
client and server. For any key transported between either client and server or
server and client, the usages array may be changed arbitrarily. In other words,
the originating host has no control over the usages a key has once imported onto
another host. Another limitation is that keys are either extractable or not, and
must be extractable in order to be wrapped. As demonstrated, extractable keys
are easily attacked and can be retrieved (including maliciously) from a client
with a single API call. Although seemingly harmless insofar as we would assume
a correctly designed Web application would only allow keys to be extractable on
purpose, this produces counter-intuitive results when mixed with wrapping, as
restricting keys to be wrapped to be extractable forces the aforementioned vul-
nerabilities. This wrapping attack was verified in all conformant Web Crypto im-
plementations, including Chrome, Edge, and FireFox. Furthermore, it prevents
WebCrypto for being used for use-cases such as those proposed by Netflix to
ensure secure delivery of key material to clients. This attack also prevents users
from sharing long-term private keys that are unknown to the server between
sessions by virtue of wrapping and sending to the server and then downloading
the wrapped keys into private local storage when a successful authentication
is completed. This is a widely requested feature for those wanting some ability



to authenticate without the server being able to easily impersonate a user by
having access to all the user’s secrets.

The lack of a long-term key storage model combined with a lack of persis-
tent key usages may be detrimental to the usage of Web Cryptography. Without
guidance, developers may make poor choices that do not meet expectations when
storing key material, as the lifetime of these keys is tied to the execution environ-
ment. While this provides many positive security and privacy benefits, to retain
a key for use in later sessions developers will need to make use of a persistent key
storage service on the server using the previously described problematic key ex-
porting and wrapping routines. As it would be expected then that key wrapping
in order to send keys from the client to the server (and back again upon revisiting
the page) will be used to preserve long-term keys, the key wrapping attacks men-
tioned earlier are particularly dangerous. One suggestion is that future versions
of the specification should likely tie private keys and wrapping operations with
special processing outside of the normal Javascript environment, or even more
ambitiously try to use a trusted environment to secure keys and cryptographic
operations. This may require some kind of tie between hardware tokens for keys
and their operations. Recently, the W3C has been exploring adding hardware
token access to the Web Cryptography API in their “Web Cryptography v.Next”
workshop, and so the next version of the API may support both secure multi-
session key storage and cryptographic operations on those keys via some form of
a trusted execution environment22 as well as access via next-generation authenti-
cation APIs such as FIDO23 to origin-bound platform-held keys via call-response
requests that do not reveal the secret key material.24

Standards to assure the end user of the integrity of Javascript code would
prevent many of these attacks. Only recently has the W3C begun to develop
standards to secure Javascript code, and these tend to be quite simple such
as the Sub-resource Integrity W3C standard that allows the hash of Javascript
to be checked before running [15] or Content Security Policy [6] that restricts
the domain of Javascript being run. In detail, Sub-resource Integrity requires
Javascript linked or imported as a script to match a particular hash before
execution and so could prevent some of these cross-scripting attacks or where
a third-party library has been exploited in order to gain access to the origin.
There does not yet exist for Javascript a way to securely install code, such as
has been done via signed code in Linux-based operating systems, much less the
more comprehensive necessary precautions taken into account by The Update
Framework.25 While signed Javascript may seem difficult, many other systems
such as native applications have moved to such a model and so it should not be
surprising if the Web itself may need to adopt signed code. In fact, the hashes

22 Such as ARM TrustZone
23 http://www.fidoalliance.org
24 For details of the W3C Web Cryptography v.Next workshop that dealt

with hardware tokens, FIDO, and trusted execution environments, see
http://www.w3.org/2012/webcrypto/webcrypto-next-workshop/

25 http://theupdateframework.com/



of popular Javascript code could even be imagined to be stored in a Merkle-tree
based append-only log such as those being designed in Certificate Transparency
[28]. Also, there does not exist a standard way to defend the entry in cleartext
of data in locally-running Javascript from the server.

These kinds of attacks could also be countered by creating higher-level li-
braries that make it easier to use the Web Cryptography API and avoid having
developers make decisions of key usages and key exporting. This design could be
validated if there was a large-scale study of the usage of the Web Cryptography
API amongst web developers attempting to solve common tasks with the API,
with an eye towards common errors and mistakes with defaults and for attacks
such as those detailed in this paper.

6.2 Next Steps for Standards Research

More formal research is needed on the larger framework of the Web Cryptogra-
phy API and the Web security model, with a focus on the possible interactions
between Web Cryptography and other APIs that are part of HTML5. Ideally,
the entire Web Security Model needs to be formalized and modeled, and it only
makes sense formalizing the security analysis of the Web Cryptography as part
of this larger analysis as most applications will use multiple APIs with possi-
bly contradictory security policies. It would make sense to engage in a thorough
study to be able to determine important security properties such as safe key stor-
age in both the specification and implementations thereof when the WebCrypto
API is used in combination with other APIs that allow low-level access to a
browser’s localstorage.

The process of formal modeling would be helpful if integrated into the stan-
dardization process to understand the security properties of APIs and their com-
plex interactions with other APIs. One approach would be to include it at the
early stages of the design of the standard. If it were, it could both correct early
flaws, but would require considerable investment in updating the model. Another
option would be do the formal model as part of the security review, although
such a security review is currently optional at the W3C. Another option would
be to include the formal modeling as part of the test-suite necessary to reach
standardiation, where the test-suite must demonstrate security properties. One
possibe incentive structure is that just as currently W3C specifications require
conformance testing via a test-suite to be done manually, the automatic gener-
ation of a test-suite using formal methods would both save the developers time
and lead to a more thorough test-suite. The formally-generated test-suite could
then be tested against real-world implementations in order to prove interop-
erability and conformance. The use of formal methods for testing is currently
under development for the new Web Authentication API (formerly the “FIDO
2.0” API) that attempts to supplement passwords with one-factor cryptographic
authentication.26 In general, we hope that formal analysis of Web APIs will lead
to a more secure Web that is better understood and easier to use for developers.

26 https://www.w3.org/TR/webauthn



Acknowledgements: Harry Halpin was supported by NEXTLEAP (EU H2020
ref: 688722). A final version of this paper was published in Security Standard-
isation Research Conference (SSR 2016). The final publication is available at
Springer via http://dx.doi.org/10.1007/978-3-319-49100-4.

References

1. David Adrian, Karthikeyan Bhargavan, Zakir Durumeric, Pierrick Gaudry,
Matthew Green, J Alex Halderman, Nadia Heninger, Drew Springall, Emmanuel
Thomé, Luke Valenta, et al. Imperfect forward secrecy: How Diffie-Hellman fails
in practice. In Proceedings of the 22nd ACM SIGSAC Conference on Computer
and Communications Security, pages 5–17. ACM, 2015.

2. Devdatta Akhawe, Adam Barth, Peifung E. Lam, John Mitchell, and Dawn Song.
Towards a formal foundation of web security. In Proceedings of the 2010 23rd IEEE
Computer Security Foundations Symposium, CSF ’10, pages 290–304, Washington,
DC, USA, 2010. IEEE Computer Society.

3. Ryan Sleevi amd Mark Watson. Web Cryptography API. Candidate recommen-
dation, IETF, 2014. http://www.w3.org/TR/WebCryptoAPI/.

4. Chetan Bansal, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, and Sergio
Maffeis. Keys to the Cloud: Formal Analysis and Concrete Attacks on Encrypted
Web Storage. In David Basin and John Mitchell, editors, Principles of Security and
Trust, volume 7796 of Lecture Notes in Computer Science, pages 126–146. Springer
Berlin Heidelberg, 2013.

5. Romain Bardou, Riccardo Focardi, Yusuke Kawamoto, Lorenzo Simionato, Gra-
ham Steel, and Joe-Kai-Tsay. Efficient padding oracle attacks on cryptographic
hardware. In Advances in Cryptology: Proceedings of CRYPTO ’12, volume 7417
of LNCS, pages 608–625. Springer, 2012.

6. Adam Barth, Dan Veditz, and Mike West. Content Security Policy level 1.1.
Working draft, W3C, 2012. http://www.w3.org/TR/2014/WD-CSP11-20140211/.

7. Mihir Bellare. New Proofs for MAC and HMAC: Security without Collision-
Resistance. In Cynthia Dwork, editor, CRYPTO, volume 4117 of Lecture Notes in
Computer Science, pages 602–619. Springer, 2006.

8. Mihir Bellare and Phillip Rogaway. The Exact Security of Digital Signatures-how
to Sign with RSA and Rabin. In Proceedings of the 15th Annual International Con-
ference on Theory and Application of Cryptographic Techniques, EUROCRYPT’96,
pages 399–416, Berlin, Heidelberg, 1996. Springer-Verlag.

9. Benjamin Beurdouche, Karthikeyan Bhargavan, Antoine Delignat-Lavaud, Cédric
Fournet, Markulf Kohlweiss, Alfredo Pironti, Pierre-Yves Strub, and Jean Karim
Zinzindohoue. A messy state of the union: Taming the composite state machines
of TLS. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 535–552.
IEEE, 2015.

10. Karthikeyan Bhargavan, Antoine Delignat Lavaud, Cédric Fournet, Alfredo
Pironti, and Pierre Yves Strub. Triple handshakes and cookie cutters: Break-
ing and fixing authentication over TLS. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 98–113. IEEE, 2014.

11. Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based on Prolog
Rules. In Proceedings of the 14th IEEE Workshop on Computer Security Founda-
tions, CSFW ’01, pages 82–, Washington, DC, USA, 2001. IEEE Computer Society.



12. D. Bleichenbacher. Chosen ciphertext attacks against protocols based on the RSA
encryption standard. In Advances in Cryptology: Proceedings of CRYPTO ’98,
volume 1462 of LNCS, pages 1–12, 1998.

13. Mike Bond and Ross Anderson. API-level attacks on embedded systems. Computer,
34(10):67–75, October 2001.

14. Dan Boneh and IgorE. Shparlinski. On the Unpredictability of Bits of the Elliptic
Curve Diffie-Hellman Scheme. In Joe Kilian, editor, Advances in Cryptology -
CRYPTO 2001, volume 2139 of Lecture Notes in Computer Science, pages 201–
212. Springer Berlin Heidelberg, 2001.

15. Frederik Braun, Devdatta Akhawe, Joel Weinberger, and Mike West. Subresource
Integrity. Working draft, W3C, 2014. http://www.w3.org/TR/SRI/.

16. Cas J. Cremers. The Scyther Tool: Verification, Falsification, and Analysis of Secu-
rity Protocols. In Proceedings of the 20th International Conference on Computer
Aided Verification, CAV ’08, pages 414–418, Berlin, Heidelberg, 2008. Springer-
Verlag.

17. Stéphanie Delaune, Steve Kremer, and Graham Steel. Formal security analysis
of PKCS#11 and proprietary extensions. J. Comput. Secur., 18(6):1211–1245,
September 2010.

18. Greg Dennis, Felix Sheng-Ho Chang, and Daniel Jackson. Modular verification of
code with sat. In Proceedings of the ACM/SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2006, Portland, Maine, USA, July 17-20,
2006, pages 109–120, 2006.

19. D. Dolev and A. Yao. On the security of public key protocols. Information Theory,
IEEE Transactions on, 29(2):198 – 208, March 1983.

20. Martin Georgiev, Subodh Iyengar, Suman Jana, Rishita Anubhai, Dan Boneh,
and Vitaly Shmatikov. The Most Dangerous Code in the World: Validating SSL
Certificates in Non-browser Software. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 38–49, New York, NY,
USA, 2012. ACM.

21. Harry Halpin. The W3C Web Cryptography API: Motivation and Overview. In
Proceedings of the Companion Publication of the 23rd International Conference on
World Wide Web Companion, WWW Companion ’14, pages 959–964, Republic and
Canton of Geneva, Switzerland, 2014. International World Wide Web Conferences
Steering Committee.

22. Daniel Jackson. Alloy: A lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol., 11(2):256–290, April 2002.

23. Tibor Jager, Sebastian Schinzel, and Juraj Somorovsky. Bleichenbacher’s Attack
Strikes again: Breaking PKCS#1 v1.5 in XML Encryption. In Sara Foresti, Moti
Yung, and Fabio Martinelli, editors, Computer Security - ESORICS 2012, volume
7459 of Lecture Notes in Computer Science, pages 752–769. Springer Berlin Hei-
delberg, 2012.

24. Bert Kaliski. PKCS #7: Cryptographic Message Syntax. RSA Security Inc., v1.5,
march 1998. https://www.ietf.org/rfc/rfc2315.txt.

25. Alan Kaminsky, Michael Kurdziel, and Stanislaw Radziszowski. An Overview of
Cryptanalysis Research for the Advanced Encryption Standard. In Military Com-
munications Conference, 2010 - MILCOM 2010, 2010.

26. Hugo Krawczyk. Cryptographic Extraction and Key Derivation: The HKDF
Scheme. In Tal Rabin, editor, CRYPTO, volume 6223 of Lecture Notes in Com-
puter Science, pages 631–648. Springer, 2010.



27. Robert Künnemann and Graham Steel. YubiSecure? Formal security analysis
results for the Yubikey and YubiHSM. In Audun Jøsang, Pierangela Samarati,
and Marinella Petrocchi, editors, Revised Selected Papers of the 8th Workshop
on Security and Trust Management (STM’12), volume 7783 of Lecture Notes in
Computer Science, pages 257–272, Pisa, Italy, September 2012. Springer.

28. B. Laurie, A. Langley, and E. Kasper. RFC 6962 Certificate Transparency. Ex-
perimental, IETF, 2013. https://tools.ietf.org/html/rfc6962.

29. Chris J. Mitchell. Error oracle attacks on CBC mode: Is there a future for CBC
mode encryption? In J. et al. Zhou, editor, ISC 2005, number 3650 in LNCS, pages
244–258, 2005.

30. Joseph P Near and Daniel Jackson. Derailer: Interactive security analysis for web
applications. In Proceedings of the 29th IEEE/ACM International Conference on
Automated Software Engineering (ASE), page to appear. IEEE/ACM, 2014.

31. K.G. Paterson and A. Yau. Padding oracle attacks on the ISO CBC mode encryp-
tion standard. In T. Okamoto, editor, RSA ’04 Cryptography Track, number 2964
in LNCS, pages 305–323. Springer, 2004.

32. Trevor Perrin. Web Cryptography API. Editor’s draft, W3C, 2014.
http://github.com/trevp/curve25519 webcrypto.

33. Juliano Rizzo and Thai Duong. Practical padding oracle attacks. In Proceedings
of the 4th USENIX conference on Offensive technologies, WOOT’10, pages 1–8,
Berkeley, CA, USA, 2010. USENIX Association.

34. P. Rogaway and T. Shrimpton. Deterministic authenticated-encryption: A
provable-security treatment of the key-wrap problem. In Advances in Cryptol-
ogy (EUROCRYPT ’06), volume 4004 of LNCS, pages 373–390, 2006. Full version
https://eprint.iacr.org/2006/221.pdf.

35. Philip Rogaway. Evaluation of some blockcipher modes of operation. Technical
report, University of California, Davis, February 2011. Evaluation carried out for
the Cryptography Research and Evaluation Committees (CRYPTREC) for the
Government of Japan.

36. Benedikt Schmidt, Ralf Sasse, Cas Cremers, and David Basin. Automated verifica-
tion of group key agreement protocols. In Security and Privacy (SP), 2014 IEEE
Symposium on, pages 179–194. IEEE, 2014.

37. Nigel P. Smart, Vincent Rijmen, Bogdan Warinschi, Gaven Watson, Kenneth Pat-
terson, and Martijn Stam. Algorithms, key sizes and parameters report: 2014
recommendations. Technical report, November 2014. ENISA Report. Version 1.0.

38. Emily Stark, Michael Hamburg, and Dan Boneh. Symmetric cryptography in
Javascript. In Proceedings of the 2009 Annual Computer Security Applications
Conference, ACSAC ’09, pages 373–381, Washington, DC, USA, 2009. IEEE Com-
puter Society.

39. Ankur Taly, Úlfar Erlingsson, John C. Mitchell, Mark S. Miller, and Jasvir Nagra.
Automated analysis of security-critical javascript apis. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages 363–378, Washington,
DC, USA, 2011. IEEE Computer Society.

40. Emina Torlak, Mana Taghdiri, Greg Dennis, and Joseph P. Near. Applications and
extensions of alloy: past, present and future. Mathematical Structures in Computer
Science, 23(4):915–933, 2013.

41. Serge Vaudenay. Security flaws induced by CBC padding - applications to SSL,
IPSEC, WTLS ... In Lars R. Knudsen, editor, EUROCRYPT, volume 2332 of
Lecture Notes in Computer Science, pages 534–546. Springer, 2002.



42. Chuah Chai Wen, Ed Dawson, Juan Manuel González Nieto, and Leonie Simpson.
A framework for security analysis of key derivation functions. In Mark Dermot
Ryan, Ben Smyth, and Guilin Wang, editors, ISPEC, volume 7232 of Lecture Notes
in Computer Science, pages 199–216. Springer, 2012.

43. Frances F. Yao and Yiqun Lisa Yin. Design and analysis of password-based key
derivation functions. In Alfred Menezes, editor, CT-RSA, volume 3376 of Lecture
Notes in Computer Science, pages 245–261. Springer, 2005.


