5,285 research outputs found
Stable Irregular Dynamics in Complex Neural Networks
For infinitely large sparse networks of spiking neurons mean field theory
shows that a balanced state of highly irregular activity arises under various
conditions. Here we analytically investigate the microscopic irregular dynamics
in finite networks of arbitrary connectivity, keeping track of all individual
spike times. For delayed, purely inhibitory interactions we demonstrate that
the irregular dynamics is not chaotic but rather stable and convergent towards
periodic orbits. Moreover, every generic periodic orbit of these dynamical
systems is stable. These results highlight that chaotic and stable dynamics are
equally capable of generating irregular activity.Comment: 10 pages, 2 figure
FERENGI: Redshifting galaxies from SDSS to GEMS, STAGES and COSMOS
We describe the creation of a set of artificially "redshifted" galaxies in
the range 0.1<z<1.1 using a set of ~100 SDSS low redshift (v<7000 km/s) images
as input. The intention is to generate a training set of realistic images of
galaxies of diverse morphologies and a large range of redshifts for the GEMS
and COSMOS galaxy evolution projects. This training set allows other studies to
investigate and quantify the effects of cosmological redshift on the
determination of galaxy morphologies, distortions and other galaxy properties
that are potentially sensitive to resolution, surface brightness and bandpass
issues. We use galaxy images from the SDSS in the u, g, r, i, z filter bands as
input, and computed new galaxy images from these data, resembling the same
galaxies as located at redshifts 0.1<z<1.1 and viewed with the Hubble Space
Telescope Advanced Camera for Surveys (HST ACS). In this process we take into
account angular size change, cosmological surface brightness dimming, and
spectral change. The latter is achieved by interpolating a spectral energy
distribution that is fit to the input images on a pixel-to-pixel basis. The
output images are created for the specific HST ACS point spread function and
the filters used for GEMS (F606W and F850LP) and COSMOS (F814W). All images are
binned onto the desired pixel grids (0.03" for GEMS and 0.05" for COSMOS) and
corrected to an appropriate point spread function. Noise is added corresponding
to the data quality of the two projects and the images are added onto empty sky
pieces of real data images. We make these datasets available from our website,
as well as the code - FERENGI: "Full and Efficient Redshifting of Ensembles of
Nearby Galaxy Images" - to produce datasets for other redshifts and/or
instruments.Comment: 11 pages, 10 figures, 3 table
Polarons in semiconductor quantum-dots and their role in the quantum kinetics of carrier relaxation
While time-dependent perturbation theory shows inefficient carrier-phonon
scattering in semiconductor quantum dots, we demonstrate that a quantum kinetic
description of carrier-phonon interaction predicts fast carrier capture and
relaxation. The considered processes do not fulfill energy conservation in
terms of free-carrier energies because polar coupling of localized quantum-dot
states strongly modifies this picture.Comment: 6 pages, 6 figures, accepted for publication in Phys.Rev.
Influence of carrier-carrier and carrier-phonon correlations on optical absorption and gain in quantum-dot systems
A microscopic theory is used to study the optical properties of semiconductor
quantum dots. The dephasing of a coherent excitation and line-shifts of the
interband transitions due to carrier-carrier Coulomb interaction and
carrier-phonon interaction are determined from a quantum kinetic treatment of
correlation processes. We investigate the density dependence of both mechanisms
and clarify the importance of various dephasing channels involving the
localized and delocalized states of the system.Comment: 12 pages, 10 figure
Recommended from our members
Impact and Influence Factors of Additive Manufacturing on Product Lifecycle Costs
At first sight the direct costs of Additive Manufacturing (AM) seem too high in comparison to
traditional manufacturing. Considering the whole lifecycle costs of parts changes the point of
view. Due to the modification of the new production process and new supply chains during a
parts lifecycle, producing companies can strongly benefit from AM. Therefore, a costing
model for assessing lifecycle costs with regard to specific applications and branches has been
developed. The costing model represents the advantages of AM monetary. For the evaluation
of this model and the influence factors, different case studies have been performed including
different approaches in part redesign. Deeper research is and will be carried out with respect
to the AM building rates and the comparability of various AM machines, as these facts are
hardly comparable for end users. This paper will present the methodology as well as the
results of the case studies conducted over the whole product lifecycle.Mechanical Engineerin
Recommended from our members
Analyzing Product Lifecycle Costs for a Better Understanding of Cost Drivers in Additive Manufacturing
The costs of additive manufactured parts often seem too high in comparison to those of
traditionally manufactured parts, as the information about major cost drivers, especially for
additive manufactured metal parts, is weak. Therefore, a lifecycle analysis of additive
manufactured parts is needed to understand and rate the cost drivers that act as the largest
contributors to unit costs, and to provide a focus for future cost reduction activities for the
Additive Manufacturing (AM) technology. A better understanding of the cost structure will
help to compare the AM costs with the opportunity costs of the classical manufacturing
technologies and will make it easier to justify the use of AM manufactured parts. This paper
will present work in progress and methodology based on a sample investigated with business
process analysis / simulation and activity based costing. In addition, cost drivers associated
with metal AM process will be rated.Mechanical Engineerin
Recommended from our members
Protection Measures against Product Piracy and Application by the Use of AM
Presently the implications Additive Manufacturing (AM) on intellectual properties are
discussed in public. Here AM is often mentioned as a driver for product piracy as it allows to
produce and to copy objects with any geometries. Imitators need a lot of information to copy
an object accurately. As reverse engineering has been identified as the most important
information source for product imitators, AM can also help to reduce the threat of product
piracy when correctly applied in the product development. Due to the layer wise production
process that allows the manufacturing of very complex shapes and geometries, the reverse-engineering process can be complicated by far. By this, quite contrary to the public opinion,
AM can increase the needed effort of imitators and strongly reduce the economic efficiency of
product piracy. This paper will show different protection measures and a methodological
approach of how to apply these measures to a product. Beside the protective effect some
measures allow a traceability of parts over the product’s lifecycle and thus support the quality
management of AM processes and additively produced parts.Mechanical Engineerin
- …