129 research outputs found

    Pion production within the hybrid relativistic plane wave impulse approximation model at MiniBooNE and MINERvA kinematics

    Get PDF
    The hybrid model for electroweak single-pion production (SPP) off the nucleon, presented in [Gonz\'alez-Jim\'enez et al., Phys. Rev. D 95, 113007 (2017)], is extended here to the case of incoherent pion-production on the nucleus. Combining a low-energy model with a Regge approach, this model provides valid predictions in the entire energy region of interest for current and future accelerator-based neutrino-oscillation experiments. The Relativistic Mean-Field model is used for the description of the bound nucleons while the outgoing hadrons are considered as plane waves. This approach, known as Relativistic Plane-Wave Impulse Approximation (RPWIA), is a first step towards the development of more sophisticated models, it is also a test of our current understanding of the elementary reaction. We focus on the charged-current ν\nu(νˉ\bar\nu)-nucleus interaction at MiniBooNE and MINERvA kinematics. The effect on the cross sections of the final-state interactions, which affect the outgoing hadrons on their way out of the nucleus, is judged by comparing our results with those from the NuWro Monte Carlo event generator. We find that the hybrid-RPWIA predictions largely underestimate the MiniBooNE data. In the case of MINERvA, our results fall below the ν\nu-induced 1π0\pi^0 production data, while a better agreement is found for ν\nu-induced 1π+\pi^+ and νˉ\bar\nu-induced 1π0\pi^0 production.Comment: 13 pages, 10 figure

    Seagull and pion-in-flight currents in neutrino-induced 1N1N and 2N2N knockout

    Full text link
    [Background] The neutrino-nucleus (νA\nu A) cross section is a major source of systematic uncertainty in neutrino-oscillation studies. A precise νA\nu A scattering model, in which multinucleon effects are incorporated, is pivotal for an accurate interpretation of the data. [Purpose] In νA\nu A interactions, meson-exchange currents (MECs) can induce two-nucleon (2N2N) knockout from the target nucleus, resulting in a two-particle two-hole (2p2h) final state. They also affect single nucleon (1N1N) knockout reactions, yielding a one-particle one-hole (1p1h) final state. Both channels affect the inclusive strength. We present a study of axial and vector, seagull and pion-in-flight currents in muon-neutrino induced 1N1N and 2N2N knockout reactions on 12^{12}C. [Method] Bound and emitted nucleons are described as Hartree-Fock wave functions. For the vector MECs, the standard expressions are used. For the axial current, three parameterizations are considered. The framework developed here allows for a treatment of MECs and short-range correlations (SRCs). [Results] Results are compared with electron-scattering data and with literature. The strengths of the seagull, pion-in-flight and axial currents are studied separately and double differential cross sections including MECs are compared with results including SRCs. A comparison with MiniBooNE and T2K data is presented. [Conclusions] In the 1p1h channel, the effects of the MECs tend to cancel each other, resulting in a small effect on the double differential cross section. 2N2N knockout processes provide a small contribution to the inclusive double differential cross section, ranging from the 2N2N knockout threshold into the dip region. A fair agreement with the MiniBooNE and T2K data is reached.Comment: 16 pages, 10 figure

    Impact of low-energy nuclear excitations on neutrino-nucleus scattering at MiniBooNE and T2K kinematics

    Get PDF
    [Background] Meticulous modeling of neutrino-nucleus interactions is essential to achieve the unprecedented precision goals of present and future accelerator-based neutrino-oscillation experiments. [Purpose] Confront our calculations of charged-current quasielastic cross section with the measurements of MiniBooNE and T2K, and to quantitatively investigate the role of nuclear-structure effects, in particular, low-energy nuclear excitations in forward muon scattering. [Method] The model takes the mean-field (MF) approach as the starting point, and solves Hartree-Fock (HF) equations using a Skyrme (SkE2) nucleon-nucleon interaction. Long-range nuclear correlations are taken into account by means of the continuum random-phase approximation (CRPA) framework. [Results] We present our calculations on flux-folded double differential, and flux-unfolded total cross sections off 12^{12}C and compare them with MiniBooNE and (off-axis) T2K measurements. We discuss the importance of low-energy nuclear excitations for the forward bins. [Conclusions] The CRPA predictions describe the gross features of the measured cross sections. They underpredict the data (more in the neutrino than in the antineutrino case) because of the absence of processes beyond pure quasielastic scattering in our model. At very forward muon scattering, low-energy nuclear excitations (ω<\omega < 50 MeV) account for nearly 50% of the flux-folded cross section.Comment: 8 pages, 9 figures. Version published in Physical Review

    Angular distributions in Monte Carlo event generation of weak single-pion production

    Get PDF
    One of the substantial sources of systematic errors in neutrino oscillation experiments that utilize neutrinos from accelerator sources stems from a lack of precision in modeling single-pion production (SPP). Oscillation analyses rely on Monte Carlo event generators (MC), providing theoretical predictions of neutrino interactions on nuclear targets. Pions produced in these processes provide a significant fraction of oscillation signal and background on both elementary scattering and detector simulation levels. Thus, it is of critical importance to develop techniques that will allow us to accommodate state-of-the-art theoretical models describing SPP into MCs. In this work, we investigate various algorithms to implement single-pion production models in Monte Carlo event generators. Based on comparison studies, we propose a novel implementation strategy that combines satisfactory efficiency with high precision in reproducing details of theoretical models predictions, including pion angular distributions. The proposed implementation is model-independent, thereby providing a framework that can include any model for SPP. We have tested the new algorithm with the Ghent Low Energy Model for single-pion production implemented in the NuWro Monte Carlo event generator.Comment: 13 pages, 8 figure

    Angular distributions in Monte Carlo event generation of weak single-pion production

    Get PDF
    One of the substantial sources of systematic errors in neutrino oscillation experiments that utilize neutrinos from accelerator sources stems from a lack of precision in modeling single-pion production (SPP). Oscillation analyses rely on Monte Carlo event generators (MC), providing theoretical predictions of neutrino interactions on nuclear targets. Pions produced in these processes provide a significant fraction of oscillation signal and background on both elementary scattering and detector simulation levels. Thus, it is of critical importance to develop techniques that will allow us to accommodate state-of-the-art theoretical models describing SPP into MCs. In this work, we investigate various algorithms to implement single-pion production models in Monte Carlo event generators. Based on comparison studies, we propose a novel implementation strategy that combines satisfactory efficiency with high precision in reproducing details of theoretical models predictions, including pion angular distributions. The proposed implementation is model-independent, thereby providing a framework that can include any model for SPP. We have tested the new algorithm with the Ghent low energy model for single-pion production implemented in the NuWro Monte Carlo event generator

    Effect of Surface Treatments on the Nanomechanical Properties of Human Hair.

    Get PDF
    The structural properties of hair are largely determined by the state of the surface. Advanced imaging modes of atomic force microscopy, where the surface mechanics can be correlated with surface topography, have been used to spatially map variations in hair surfaces following chemical and mechanical treatments. Through analysis of multilayered data obtained in this way, we show that the processes of bleaching and combing of hair not only alter the surface roughness, but also alter the mechanical stiffness, adhesion properties, and surface potential of hair, in terms of the mean values and their distributions. These treatments are shown to have a significant effect on the nanoscale surface properties, consistent with what has previously been observed at the macroscopic fiber-level scale.Unileve

    Towards a more complete description of nucleon distortion in lepton-induced single-pion production at low-Q2Q^2

    Full text link
    Theoretical predictions for lepton-induced single-pion production (SPP) on 12^{12}C are revisited in order to assess the effect of different treatments of the current operator. On one hand we have the asymptotic approximation, which consists in replacing the particle four-vectors that enter in the operator by their asymptotic values, i.e., their values out of the nucleus. On the other hand we have the full calculation, which is a more accurate approach to the problem. We also compare with results in which the final nucleon is described by a relativistic plane wave, to rate the effect of the nucleon distortion. The study is performed for several lepton kinematics, reproducing inclusive and semi-inclusive cross sections belonging to the low-Q2Q^2 region (between 0.05 and 1 GeV2^2), which is of special interest in charged-current (CC) neutrino-nucleus 1π\pi production. Inclusive electron results are compared with experimental data. We find non-trivial corrections comparable in size with the effect of the nucleon distortion, namely, corrections up to 6\%, either increasing or diminishing the asymptotic prediction, and a shift of the distributions towards higher energy transfer. For the semi-inclusive cross sections, we observe the correction to be prominent mainly at low values of the outgoing nucleon kinetic energy. Finally, for CC neutrino-induced 1π+\pi^+ production, we find a reduction at low-Q2Q^2 with respect to both the plane-wave approach and the asymptotic case

    Neutrino-induced pion production from nuclei at medium energies

    Get PDF
    We present a fully relativistic formalism for describing neutrino-induced Δ\Delta-mediated single-pion production from nuclei. We assess the ambiguities stemming from the Δ\Delta interactions. Variations in the cross sections of over 10% are observed, depending on whether or not magnetic-dipole dominance is assumed to extract the vector form factors. These uncertainties have a direct impact on the accuracy with which the axial-vector form factors can be extracted. Different predictions for C5A(Q2)C_5^A(Q^2) induce up to 40-50% effects on the Δ\Delta-production cross sections. To describe the nucleus, we turn to a relativistic plane-wave impulse approximation (RPWIA) using realistic bound-state wave functions derived in the Hartree approximation to the σ\sigma-ω\omega Walecka model. For neutrino energies larger than 1 GeV, we show that a relativistic Fermi-gas model with appropriate binding-energy correction produces comparable results as the RPWIA which naturally includes Fermi motion, nuclear-binding effects and the Pauli exclusion principle. Including Δ\Delta medium modifications yields a 20 to 25% reduction of the RPWIA cross section. The model presented in this work can be naturally extended to include the effect of final-state interactions in a relativistic and quantum-mechanical way. Guided by recent neutrino-oscillation experiments, such as MiniBooNE and K2K, and future efforts like MINERν\nuA, we present Q2Q^2, WW, and various semi-inclusive distributions, both for a free nucleon and carbon, oxygen and iron targets.Comment: 25 pages, 14 figure
    corecore