8,409 research outputs found
Analysis of a Magnetically Trapped Atom Clock
We consider optimization of a rubidium atom clock that uses magnetically
trapped Bose condensed atoms in a highly elongated trap, and determine the
optimal conditions for minimum Allan variance of the clock using microwave
Ramsey fringe spectroscopy. Elimination of magnetic field shifts and
collisional shifts are considered. The effects of spin-dipolar relaxation are
addressed in the optimization of the clock. We find that for the interstate
interaction strength equal to or larger than the intrastate interaction
strengths, a modulational instability results in phase separation and symmetry
breaking of the two-component condensate composed of the ground and excited
hyperfine clock levels, and this mechanism limits the clock accuracy.Comment: 11 pages, 6 figures. Accepted for publication in Phys. Rev.
Concentrated mass effects on the flutter of a composite advanced turboprop model
The effects on bending-torsion flutter due to the addition of a concentrated mass to an advanced turboprop model blade with rigid hub are studied. Specifically the effects of the magnitude and location of added mass on the natural frequencies, mode shapes, critical interblade phase angle, and flutter Mach number are analytically investigated. The flutter of a propfan model is shown to be sensitive to the change in mass distribution. Static unbalance effects, like those for fixed wings, were shown to occur as the concentrated mass was moved from the leading edge to the trailing edge with the exception of one mass location. Mass balancing is also inferred to be a feasible method for increasing the flutter speed
Man-machine interface analysis of the flight design system
The objective of the current effort was to perform a broad analysis of the human factors issues involved in the design of the Flight Design System (FDS). The analysis was intended to include characteristics of the system itself, such as: (1) basic structure and functional capabilities of FDS; (2) user backgrounds, capabilities, and possible modes of use; (3) FDS interactive dialogue, problem solving aids; (4) system data management capabilities; and to include, as well, such system related matters as: (1) flight design team structure; (2) roles of technicians; (3) user training; and (4) methods of evaluating system performance. Wherever possible, specific recommendations are made. In other cases, the issues which seem most important are identified. In some cases, additional analyses or experiments which might provide resolution are suggested
Chiral Symmetry and the Parity-Violating Yukawa Coupling
We construct the complete SU(2) parity-violating (PV)
interaction Lagrangian with one derivative, and calculate the chiral
corrections to the PV Yukawa coupling constant through in the leading order of heavy baryon expansion. We
discuss the relationship between the renormalized \hpi, the measured value of
\hpi, and the corresponding quantity calculated microscopically from the
Standard Model four-quark PV interaction.Comment: RevTex, 26 pages + 5 PS figure
Subleading corrections to parity-violating pion photoproduction
We compute the photon asymmetry Bγ for near threshold parity-violating (PV) pion photoproduction through subleading order. We show that subleading contributions involve a new combination of PV couplings not included in previous analyses of hadronic PV. We argue that existing constraints on the leading order contribution to Bγ—obtained from the PV γ-decay of 18F—suggest that the impact of the subleading contributions may be more significant than expected from naturalness arguments
Gravity Waves from a Cosmological Phase Transition: Gauge Artifacts and Daisy Resummations
The finite-temperature effective potential customarily employed to describe
the physics of cosmological phase transitions often relies on specific gauge
choices, and is manifestly not gauge-invariant at finite order in its
perturbative expansion. As a result, quantities relevant for the calculation of
the spectrum of stochastic gravity waves resulting from bubble collisions in
first-order phase transitions are also not gauge-invariant. We assess the
quantitative impact of this gauge-dependence on key quantities entering
predictions for gravity waves from first order cosmological phase transitions.
We resort to a simple abelian Higgs model, and discuss the case of R_xi gauges.
By comparing with results obtained using a gauge-invariant Hamiltonian
formalism, we show that the choice of gauge can have a dramatic effect on
theoretical predictions for the normalization and shape of the expected gravity
wave spectrum. We also analyze the impact of resumming higher-order
contributions as needed to maintain the validity of the perturbative expansion,
and show that doing so can suppress the amplitude of the spectrum by an order
of magnitude or more. We comment on open issues and possible strategies for
carrying out "daisy resummed" gauge invariant computations in non-Abelian
models for which a gauge-invariant Hamiltonian formalism is not presently
available.Comment: 25 pages, 10 figure
Environmental, developmental, and genetic factors controlling root system architecture
A better understanding of the development and architecture of roots is essential to develop strategies to increase crop yield and optimize agricultural land use. Roots control nutrient and water uptake, provide anchoring and mechanical support and can serve as important storage organs. Root growth and development is under tight genetic control and modulated by developmental cues including plant hormones and the environment. This review focuses on root architecture and its diversity and the role of environment, nutrient, and water as well as plant hormones and their interactions in shaping root architecture
Constraints on T-Odd, P-Even Interactions from Electric Dipole Moments
We construct the relationship between nonrenormalizable,effective,
time-reversal violating (TV) parity-conserving (PC) interactions of quarks and
gauge bosons and various low-energy TVPC and TV parity-violating (PV)
observables. Using effective field theory methods, we delineate the scenarious
under which experimental limits on permanent electric dipole moments (EDM's) of
the electron, neutron, and neutral atoms as well as limits on TVPC observables
provide the most stringent bounds on new TVPC interactions. Under scenarios in
which parity invariance is restored at short distances, the one-loop EDM of
elementary fermions generate the most severe constraints. The limits derived
from the atomic EDM of Hg are considerably weaker. When parity symmetry
remains broken at short distances, direct TVPC search limits provide the least
ambiguous bounds. The direct limits follow from TVPC interactions between two
quarks.Comment: 43 pages, 9 figure
- …