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SUMMARY 

The e f f e c t s  on bending-torsion f l u t t e r  due t o  the  a d d i t i o n  o f  a concen- 
t r a t e d  mass t o  an advanced turboprop model blade w i t h  r i g i d  hub are  s tud ied.  
S p e c i f i c a l l y  the  e f f e c t s  o f  the  magnitude and l o c a t i o n  o f  added mass on the  
n a t u r a l  f requencies,  mode shapes, c r i t i c a l  i n t e r b l a d e  phase angle, and f l u t t e r  
Mach number a re  a n a l y t i c a l l y  invest igated.  The f l u t t e r  o f  a propfan model i s  
shown t o  be s e n s i t i v e  t o  the  change i n  mass d i s t r i b u t i o n .  S t a t i c  unbalance 

w e f f e c t s ,  l i k e  those f o r  f i x e d  wings, were shown t o  occur as the  concentrated 
mass was moved from the  lead ing  edge t o  the  t r a i l i n g  edge w i t h  the  except ion 
o f  one mass loca t i on .  Mass balancing i s  a l s o  i n f e r r e d  t o  be a f e a s i b l e  method 
f o r  i nc reas ing  the  f l u t t e r  speed. 
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INTRODUCTION 

I t  i s  recognized t h a t  t he  i nc lus ion  o f  geometric n o n l i n e a r i t i e s  and aero- 
dynamic coupl ing (cascade e f f e c t s )  between the  blades should be inc luded i n  the  
fo rmu la t i on  o f  ae roe las t i c  models f o r  advanced turboprops (propfans).  Fur ther -  
more, wind tunnel  model t e s t s  revealed t h a t  f l u t t e r  speed i s  very s e n s i t i v e  t o  
the  p o s i t i o n  o f  s t r a i n  gauges and associated w i res .  However, i t  was no t  
apparent whether a change i n  mass or  i t s  d i s t r i b u t i o n ,  damping o f  t he  asso- 
c i a t e d  wi res,  o r  a change i n  the aerodynamics, o r  a combination o f  a l l ,  t h a t  
r e s u l t e d  i n  the  change i n  f l u t t e r  speed. The e f f e c t s  o f  concentrated mass and 
i t s  l o c a t i o n  on the  f l u t t e r  o f  a propfan i s  t h e  subject  o f  t he  present i n v e s t i -  
ga t ion .  This i n v e s t i g a t i o n  was conducted by u t i l i z i n g  an a v a i l a b l e  a n a l y t i c a l  
model o f  a wind tunnel  research propfan model known as the  SR3C-X2. The 
exper imental  f l u t t e r  r e s u l t s  f o r  the  SR3C-X2 propfan are  g iven i n  re ference 1. 

The f l u t t e r  analys is ,  w i t h  and wi thout  concentrated mass, was performed 
us ing  ASTROP (Aeroe las t ic  S T a b i l i t y  and Response O f  Propfans), a code developed 
a t  NASA Lewis ( r e f .  2 ) .  The s t r u c t u r a l  model used i n  t h i s  code i s  represented 
by b lade geometry and the  normal modes and frequencies o f  the  r o t a t i n g  blade 
i n c l u d i n g  geometric nonl inear  e f fec ts .  The aerodynamic p o r t i o n  o f  the  code i s  
based on three-dimensional, unsteady, l i n e a r  aerodynamics w i t h  a constant 
pressure panel d i s c r e t i z a t i o n  ( r e f s .  3 t o  5 ) .  

The e f f e c t s  o f  center o f  g r a v i t y  l o c a t i o n  w i t h  respect t o  the  e l a s t i c  a x i s  
on t h e  f l u t t e r  speed o f  f i x e d  wings are i nves t i ga ted  i n  references 6 t o  9 as 
w e l l  as others.  The e l a s t i c  axes o f  f i x e d  wings a re  usua l l y  s t r a i g h t ,  o r  
n e a r l y  so.  T h i s  l o c a l  d is tance between the  e l a s t i c  ax i s  and the center  o f  
g r a v i t y  i s  known as s t a t i c  unbalance. For f i x e d  wings, the  f l u t t e r  speed 
genera l l y  decreases as the center o f  g r a v i t y  i s  moved a f t  o f  the  e l a s t i c  a x i s  
towards the  t r a i l i n g  edge ( t . e . ) .  I t  i s  t he re fo re  des i rab le  t o  l oca te  the  



center  o f  g r a v i t y  ahead o f  the  e l a s t i c  a x i s  towards the  1.e. 
s t a t i c  unbalance i s  a very impor tant  f a c t o r  on f l u t t e r  of f i x e d  wings. 

Therefore,  

Turbofan blades a re  t h i n  and e x h i b i t  very l i t t l e  sweep i f  any, and have a 
l a r g e  p r e t w i s t .  The e l a s t i c  a x i s  a l s o  tends t o  be s t r a i g h t .  
a re  strong. 
f l u t t e r  o f  turbofan blades a re  i nves t i ga ted  i n  references 10 t o  13, among 
o thers .  

Cascade e f f e c t s  
The e f f e c t s  o f  e l a s t i c  a x i s  and center  of g r a v i t y  p o s i t i o n  on 

Propfan blades have l a r g e  sweep and t w i s t ,  and a re  t h i n  and f l e x i b l e .  
These blades are usua l l y  o f  low aspect r a t i o .  
b lade i s  n o t  s t r a i g h t  and may no t  l i e  on the  blade i t s e l f .  To the  best  o f  t he  
au thors '  knowledge, the  e f f e c t s  o f  adding a concentrated mass a t  severa l  b lade 
rad ius  s t a t i o n s  near the  t i p ,  on the  f l u t t e r  Mach number, f l u t t e r  frequency and 
n a t u r a l  modes are n o t  found i n  the  l i t e r a t u r e .  By p o s i t i o n i n g  concentrated 
mass a t  var ious loca t ions  f rom the  1.e. t o  the  t.e. a t  a g iven  blade rad ius  
sect ion,  i t  w i l l  be poss ib le  t o  determine the  q u a l i t a t i v e  e f f e c t s  o f  concen-. 
t r a t e d  mass loca t i on  on f l u t t e r  speed. 

The e l a s t i c  a x i s  o f  a propfan 

ANALY'IICAL MODEL 

The SR3C-X2 propfan cons is ts  o f  e i g h t  blades. 

A COSMIC NASTRAN f i n i t e  element model o f  t he  SR3C-X2 propfan 

The graphite/epoxy blades 
have 20 percent  o f  the  p l y  lay-ups a t  222.5" w i t h  respect  t o  the  p i t c h  ax i s ,  
o r  the  Z ax i s ,  whereas the remainder o f  t he  p l y  lay-ups a re  p a r a l l e l  t o  the  
p i t c h  ax i s .  
( r e f .  1) blade i s  shown i n  f i g u r e  1. 

NASTRAN input  data a l ready ex i s ted  a t  NASA Lewis f o r  t he  SR3C-X2 blade f o r  
an rpm o f  6950 w i th  a blade p i t c h  angle o f  56.4' a t  the  th ree  quar te r  rad ius .  
For convenience t h i s  blade and opera t ing  c o n d i t i o n  were chosen f o r  t h i s  analy-  
t i c a l  study. The f i n i t e  element model ( f i g .  1) was developed by W.L. Tanksley 
and Associates, Inc.  under NASA cont rac t .  The a n a l y t i c a l  b lade model which i s  
clamped a t  the  r o o t  cons is ts  o f  383 C T R I A 2  elements and has a t i p  rad ius  o f  
0.31 m. Due t o  the assumption t h a t  the  blades a re  not s t r u c t u r a l l y  coupled 
w i t h  each other ,  on ly  one blade was modelled us ing  NASTRAN. The ac tua l  number 
o f  blades on the propfan was s p e c i f i e d  w i t h i n  ASTROP. So when a concentrated 
mass was added t o  one blade model, i t  was i n  e f f e c t  added t o  the  o ther  seven 
blades as w e l l .  The concentrated masses were assumed t o  have no mass moment 
o f  i n e r t i a  about t h e i r  own ax i s .  

The values chosen f o r  the magnitude o f  t he  concentrated mass were 0.1, 
0.2, 0.5, and 1.0 percent o f  the  t o t a l  b lade mass. The NASTRAN ca l cu la ted  
composite blade mass was 161 grams. 

As  shown i n  f i g u r e  2, 10 g r i d  po in ts  were chosen t o  p o s i t i o n  the  
concentrated mass. A t  the  100 percent  rad ius :  13 percent  chord (g.p. 221), 
51 percent  chord (9.p. 224). and 88 percent chord (g.p. 227) .  A t  the  
94 percent  radius: 0 percent chord (g.p. 202), 51 percent  chord (g.p. 206). 
88 percent chord (g.p. 209), and 100 percent chord (g.p. 210). A t  the  
82 percent radius:  0 percent chord (g.p. 175) ,  51 percent  chord (g.p. 179), 
and 100 percent  chord (g.p. 183). 

2 



PROCEDURE 

COBSTRAN (COmposite Blade STRuctural ANalysis), a preprocessor t o  NASTRAN 
developed a t  NASA Lewis ( r e f .  14) ,  was used t o  generate the  c o n n e c t i v i t y  and 
the  equ iva len t  an i so t rop i c  ma te r ia l  proper ty  cards f o r  use i n  NASTRAN, f rom the  
composite blade lay-up. The concentrated mass was added t o  the  NASTRAN blade 
model by use o f  the  CONM2 bu lk  data card ( r e f .  15).  Using the  COSMIC NASTRAN 
s t a t i c  ana lys is  w i t h  d i f f e r e n t i a l  s t i f f n e s s ,  the d i f f e r e n t i a l  s t i f f n e s s  m a t r i x  
was obtained. 
mat r ix .  

This was fo l lowed by an eigen ana lys is  us ing the  t o t a l  s t i f f n e s s  

For the NASTRAN analyses the  blade i s  considered t o  be r o t a t i n g  i n  a 
vacuum, and hence on ly  c e n t r i f u g a l  loads are  a c t i n g  on the  blade. Using the  
f i r s t  SIX eigenvectors the  f l u t t e r  Hach number, f l u t t e r  frequency and c r i t i c a l  
i n t e r b l a d e  phase angle were ca lcu lated using ASTROP. The f l i g h t  Mach number 
i s  spec i f i ed  by the  user. For each in te rb lade  phase angle, ASTROP assumes a 
f l u t t e r  frequency and the  complex eigenvalue f o r  each mode. The r e a l  p a r t  o f  
t he  eigenvalue corresponds t o  the  damping and the  imaginary p a r t  t o  the  f r e -  
quency. From these damping and frequency values ASTROP ca lcu la tes  a "matched 
frequency" and the  corresponding damping f o r  the  In te rb lade  phase angle by 
i t e r a t i n g  on the  assumed f l u t t e r  frequency. 
The Mach number i s  then var ied  by the user u n t i l  the  damping i s  near zero. 
The in te rb lade  phase angle t h a t  f i rst e x h i b i t s  a zero damping i s  the  c r i t i c a l  
i n t e r b l a d e  phase angle. L inear i n t e r p o l a t i o n  i s  performed by the  user t o  
c a l c u l a t e  the f l u t t e r  frequency and f l u t t e r  Mach number corresponding t o  zero 
dampi ng . 

This i s  done f o r  each phase angle. 

RESULTS 

A vast  number o f  geometric locat ions and mass magnitudes could have been 
chosen f o r  t h i s  study. However, t o  keep t h i s  i n v e s t i g a t i o n  w i t h i n  reason a 
minimum number o f  cases were selected which would g i v e  a q u a l i t a t i v e  under- 
s tanding of  concentrated mass e f fec ts  on f l u t t e r .  These selected cases are  
presented i n  t a b l e  I .  
NASTRAN represent the  na tu ra l  frequency o f  the  SR3C-X2 blade r o t a t i n g  a t  
6950 rpm w i t h  no aerodynamic loading. 
speed o f  sound being 339.85 m/sec, a t  an atmospheric pressure o f  93764 N/m2 and 
a i r  dens i t y  o f  1.1366 kg/m3. For an rpm of  6950, wind tunnel  o r  f l i g h t  Mach 
numbers less than 0.46 r e s u l t  i n  large s teady-state angles o f  a t tack .  There- 
fo re ,  f o r  f l i g h t  f l u t t e r  Mach numbers less  than 0.46 the  aerodynamic model, 
which assumes small  steady-state angles o f  a t tack ,  i s  s t re tched beyond i t s  
l i m i t s  o f  a p p l i c a b i l i t y .  However, ca lcu la ted  f l u t t e r  Mach numbers below 0.46 
and t h e i r  associated i n te rb lade  phase angles and frequencies are  q u a l i t a t i v e l y  
meaningful i n  t h a t  they he lp  b e t t e r  de f i ne  the  var ious t rends.  

The na tu ra l  frequencies and mode shapes obtained from 

The f l u t t e r  Mach number i s  based on the  

Natural Frequencies 

The na tu ra l  frequencies of the blades w i t h  concentrated mass located a t  
the 100, 94, and 88 percent rad ius s ta t ions  are tabu la ted  i n  tab les  11, 111, 
and I V  respec t ive ly .  Also included I n  the  tab les  f o r  comparison, a re  the 
n a t u r a l  frequencies o f  t he  reference blade which has no concentrated mass. 
The f i r s t  mode i s  predominantly f l a t w i s e  bending, the  second mode i s  predom- 
i n a n t l y  t o rs iona l ,  and the  t h i r d  mode i s  predominantly second f l a t w i s e  bending. 
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Only th ree  modes are  presented because the  f l u t t e r  mode, which w i l l  be d i s -  
cussed l a t e r ,  i s  a coup l ing  o f  the  f i r s t  and second modes and I s  n o t  a f f e c t e d  
apprec iab ly  by the h igher  modes. 

For the  100 percent rad ius  ( t a b l e  11) i t  i s  shown t h a t  t h e  n a t u r a l  
f requencies f o r  the  f i r s t  and second modes increases as the  mass i s  moved 
towards the  1.e. This i s  t r u e  f o r  a l l  t he  mass magnitudes. However, the  
a d d i t i o n  o f  these masses keeps the  f i r s t  and second mode frequencies below 
t h a t  o f  t he  reference model. The n a t u r a l  frequency f o r  t h e  t h i r d  mode i s  
h ighes t  when the mass i s  loca ted  a t  t he  51 percent  chord. A t  t h i s  p o i n t  t he  
n a t u r a l  frequency i s  h igher  than t h a t  of t he  reference model. This i s  
a t t r i b u t e d  t o  c e n t r i f u g a l  s t i f f e n i n g  e f f e c t s .  

A t  the  94 percent rad ius  ( t a b l e  111), t he  f i r s t  mode frequency increases 
as the  mass i s  pos i t ioned towards the  1.e. The h ighes t  second and t h i r d  mode 
frequencies are  shown t o  occur when the mass i s  loca ted  a t  t he  51 percent 
chord. The lowest second and t h i r d  mode frequencies occur when the  mass i s  
located a t  the t r a i l i n g  edge, except f o r  t he  1.0 percent  mass. 
mode n a t u r a l  frequency i s  h igher  than t h a t  ca l cu la ted  f o r  the  same mass a t  t he  
88 percent chord. 

Here the  second 

For the  82 percent rad ius  ( t a b l e  I V ) ,  as the  mass I s  moved f rom the  t .e .  
t o  the  1.e. the f i r s t  and t h i r d  mode frequencies increase. The h ighes t  second 
mode frequency occurs when the  mass i s  loca ted  a t  the  51 percent  chord. The 
lowest second mode frequency occurs when the  mass i s  loca ted  a t  the  t .e .  

Mode Shapes 

The f i r s t  three na tu ra l  ( i n  vacuum) mode shapes f o r  t he  SR3C-X2 blade a t  
6950 rpm a re  shown i n  f i g u r e  3. The change i n  the  f i r s t  and second mode shapes 
o f  the  reference model, when the  0.5 percent  mass i s  moved from t h e  13 percent  
chord t o  the  88 percent chord a t  t he  100 percent  rad ius  a re  shown i n  f i g u r e s  4, 
5, and 6 respec t ive ly .  
88 percent chord, i t  can be seen t h a t  the  f i r s t  mode shape changes n e g l i g i b l y ,  
whereas the  second mode nodal l i n e  s h i f t s  c lose r  t o  the  t .e .  

As t he  mass i s  moved f rom t h e  13 percent  chord t o  the  

Due t o  the change i n  t rends encountered as a r e s u l t  o f  adding the  
1.0 percent mass a t  t he  t .e .  o f  t he  94 percent rad ius  s t a t i o n ,  the  f i r s t  and 
second mode shapes f o r  the 1.0 percent mass loca ted  the re  a r e  presented i n  
f i g u r e  7. The a d d i t i o n  o f  the  1.0 percent mass a t  t he  t .e .  created a l o c a l i z e d  
f l a p p i n g  motion o f  the blade t i p  t r a i l i n g  edge. This  f l a p p i n g  mot ion o f  the  
t i p  was observed us ing the  animat ion c a p a b i l i t y  o f  EZPLOT, a graphics package 
developed a t  NASA Lewis. 
l i n e  f o r  t he  second mode, the re  are  t w o .  The a d d i t i o n a l  nodal l i n e  runs f i om 
the  t i p  o f  the  blade t o  j u s t  above g r i d  p o i n t  210. 
a c o n t r i b u t i n g  fac to r  t o  the  increase I n  the  f l u t t e r  Mach number (Mf  = 0.60). 
which w i l l  be discussed f u r t h e r  i n  the next  sec t ion .  

I t  i s  shown i n  f i g u r e  7 t h a t  ins tead o f  one nodal 

This  a l t e r e d  mode shape i s  

F l u t t e r  Resul ts  

The f l u t t e r  speed o f  a propfan blade may be charac ter ized  by one o f  
several  parameters such as: t he  wind tunnel  Mach number ( f l i g h t  Mach number); 
r o t a t i o n a l  speed o r  equ iva len t  blade Mach number a t  t h e  b lade t i p ;  o r  b lade 
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h e l i c a l  Mach number which corresponds t o  the  blade r e l a t i v e  speed a t  a r e f e r -  
ence rad ius .  I n  t h i s  r e p o r t  wind tunnel Mach number a t  a g iven r o t a t i o n a l  
speed i s  chosen t o  charac ter ize  the  f l u t t e r  speed. 

The o ther  parameters associated w i t h  f l u t t e r  a re  t h e  reduced frequency and 
the  i n t e r b l a d e  phase angle. 
qua r te r  rad ius  and i s  based on the  blade semi chord. The number o f  poss ib le  
i n t e r b l a d e  phase angles are  g iven by the  r e l a t i o n :  

The reduced frequency i s  ca l cu la ted  a t  t he  th ree  

ar = 360 r / N  r = 0, 1, 2, ... N-1 

where N i s  t he  number o f  blades. The blade numbering sequence and d i r e c t i o n  
o f  r o t a t i o n  a re  shown i n  f i g u r e  8. For the  SR3C-X2 the re  a r e  e i g h t  blades and 
hence the  poss ib le  i n te rb lade  phase angles a re  0, 45, 90, 135, 180, 225, 270,  
and 315', respec t i ve l y .  The phase angles o f  45, 90, and 135' correspond t o  
forward t r a v e l l n g  waves which are  i n  the  d i r e c t i o n  o f  r o t a t i o n .  
angles o f  225, 270 ,  and 315' correspond t o  backward t r a v e l i n g  waves which are  
i n  t h e  d i r e c t i o n  opposi te  t o  t h e  ro ta t l on .  
s tanding waves. 

The phase 

The phase angles o f  0 and 180' a re  

100 percent  rad ius.  - The v a r i a t i o n  o f  t he  f l u t t e r  Mach number, f l u t t e r  
frequency, and c r i t i c a l  i n t e r b l a d e  phase angle w i t h  mass magnitude and l o c a t i o n  
f o r  t he  100 percent rad ius  s t a t i o n  are shown i n  f i g u r e s  9, 10, and 11, respec- 
t i v e l y .  For comparison the  reference con f igu ra t ton  (no concentrated mass) i s  
a l s o  inc luded.  For the  reference conf igura t ion ,  t he  f l u t t e r  Mach number, 
f l u t t e r  frequency and the  l e a s t  s tab le i n t e r b l a d e  phase angles are:  0.54, 304 
cycles/sec, and 225', r espec t i ve l y .  

I t  can be seen from f i g u r e  9, tha t  f o r  a g iven concentrated mass a t  the  
100 percent  rad ius  s t a t i o n  the f l u t t e r  Mach number decreases as the  mass i s  
moved towards the  t .e.  The f l u t t e r  Mach number i s  Increased above t h a t  o f  t he  
reference model when the  mass i s  located a t  the  13 percent  chord. When the  
concentrated mass i s  located a t  t he  51 percent chord, and the  88 percent chord, 
t he  f l u t t e r  Mach number i s  decreased below t h a t  f o r  the  reference model. 

The reason f o r  the  change i n  f l u t t e r  Mach number w i t h  respect t o  concen- 
t r a t e d  mass p o s i t i o n  can be explained by i d e a l i z l n g  the  b lade as a t y p i c a l  
sec t i on  w i t h  t w o  degrees o f  freedom. The f i r s t  mode can be thought o f  as one 
o f  uncoupled bending and the  second mode as one o f  uncoupled f i r s t  t o r s i o n .  
The e l a s t l c  a x i s  p o s t t t o n  f o r  the sect ion l i e s  i n  f r o n t  o f  the  lead ing  edge 
because o f  the  blade sweep. The center o f  g r a v i t y  i s  approximately between 40 
and 50 percent  chord f o r  the  reference con f igu ra t ton .  When the mass i s  added 
a t  t he  lead ing  edge the  d is tance between the  e l a s t i c  a x i s  and center  o f  g r a v i t y  
i s  reduced. This w i l l  cause an increase i n  the  f l u t t e r  Mach number ( r e f .  8) .  
When the  mass i s  added a t  the  t r a i l i n g  edge the  d is tance between the  e l a s t i c  
a x i s  and the  center  o f  g r a v i t y  i s  increased. This w i l l  decrease the f l u t t e r  
Mach number. 

F igure  10 shows t h a t  the  add i t i on  o f  t he  concentrated masses a t  t he  13 
and 51 percent  chord decreased t h e  f l u t t e r  frequency below t h a t  o f  t h e  r e f e r -  
ence model. A t  t he  88 percent chord the  0.1 percent mass increased the  f l u t t e r  
frequency above t h a t  o f  the  reference model, whereas the  0.5 and 1.0 percent 
mass r e s u l t e d  i n  a decrease i n  t h e  f l u t t e r  frequency. 
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Figure  11 shows the  c r i t i c a l  i n t e r b l a d e  phase angle t o  be 225' f o r  a l l  t he  
concentrated masses a t  t he  13 and 51 percent  chord. 
t he  0.1 percent  mass produced a phase angle of 180°, whereas t h e  0.5 and 
1.0 percent masses resu l ted  i n  a c r i t i c a l  i n t e r b l a d e  phase angle o f  135". 

A t  t he  88 percent  chord 

94 percent  radius.  - The v a r i a t i o n  o f  t h e  f l u t t e r  Mach number, f l u t t e r  
frequency, and c r i t i c a l  i n te rb lade  phase angle w i t h  mass magnitude and loca-  
t i o n  a r e  shown i n  f i g u r e s  12, 13, and 14. F igure  12  shows t h a t  as the  mass i s  
increased a t  the  1.e. t he  f l u t t e r  Mach number increases. The 0.1 percent  mass 
gives a f l u t t e r  Mach number s l i g h t l y  above t h a t  f o r  t he  reference model. 
0.5 and 1.0 percent masses resu l ted  i n  more o f  an increase i n  the  f l u t t e r  Mach 
number above the  reference model. A t  t he  51 percent  chord, t he  0.1 percent  
mass g ives no s i g n i f i c a n t  change i n  the  f l u t t e r  mach number. Here, t he  0.5 
and 1.0 percent  masses r e s u l t  i n  a s l i g h t  increase i n  the  f l u t t e r  Mach number. 

The 

When the  1.0 percent mass was located a t  t h e  t.e., t he  f l u t t e r  Mach number 
was ca l cu la ted  t o  be above t h a t  o f  the  reference model. This r e s u l t  seemed 
pecu l i a r ,  i n  t h a t  t he  f l u t t e r  Mach number was shown t o  decrease w i t h  t h e  addi -  
t i o n  o f  mass a t  the t.e., f o r  the  o ther  rad ius  s ta t i ons .  However, the  a l t e r e d  
second mode shape (see f i g .  7 )  may be the  cause o f  the increase i n  the  f l u t t e r  
speed. Because o f  t he  d i f f e r e n t  t rend encountered here, a d d i t i o n a l  data p o i n t s  
were chosen t o  help de f i ne  t h i s  change. It was des i red t o  see the  e f f e c t s  o f  
concentrated mass a t  l oca t i ons  c lose  t o  the  t .e.  Therefore a 0.2 percent  mass 
was loca ted  a t  the t . e .  f o r  one data p o i n t  and a 1.0 percent mass was loca ted  
a t  the  88 percent chord f o r  another data p o i n t .  A t  the  88 percent  chord, t he  
a d d i t i o n  o f  t he  1.0 percent mass decreased the  f l u t t e r  Mach number t o  0.30. 
This r e s u l t  agreed w i t h  the  t rends a t  t he  o ther  rad ius  s ta t i ons .  A t  t h e  t.e., 
t he  0.1 and 0.2 percent masses a l s o  resu l ted  i n  a decrease i n  the  f l u t t e r  Mach 
number f rom t h a t  o f  the reference model. The 0.5 percent mass resu l ted  i n  a 
decrease i n  the  f l u t t e r  Mach number t o  Mf = 0.17. Again, i t  should be men- 
t ioned t h a t  f o r  Mach numbers less  than 0.46 the  steady-state angle o f  a t t a c k  
o f  the  blades are l a rge  and hence the  aerodynamic model which assumes smal l  
steady-state angles o f  a t tack  i s  s t re tched beyond i t s  l i m i t s  o f  a p p l i c a b i l i t y .  
However, ca lcu la ted  f l u t t e r  Mach numbers below 0.46 and t h e i r  associated i n t e r -  
blade.phase angles and frequencies a re  considered t o  be meaningful i n  t h a t  they 
he lp  de f i ne  the  various t rends i n  a q u a l i t a t i v e  manner. 

F igure  13 shows t h a t  the  a d d i t i o n  o f  t he  masses a t  the  51 percent  chord 
and a t  t he  1.e.. decreased the  f l u t t e r  frequency below t h a t  o f  the  reference 
model. A t  the  t .e.  the a d d i t i o n  o f  the  0.1 and 0.2 percent masses increased 
the  f l u t t e r  frequency above t h a t  o f  t he  reference model, whereas the  0.5 and 
1.0 percent masses decrease the  f l u t t e r  frequency below t h a t  o f  t he  reference 
model. A t  t he  88 percent chord, t he  1.0 percent  mass a l s o  decreased the  
f l u t t e r  frequency below t h a t  o f  t he  reference. 

F igure  1 4  shows the  i n te rb lade  phase angle t o  be 225' f o r  t he  masses 
located a t  t he  1.e. and a t  t he  51 percent chord. A t  t he  t .e .  the  0.1 and 
0.2 percent  masses produced a c r i t i c a l  i n t e r b l a d e  phase angle o f  180°, whereas 
the  0.5 and 1.0 percent masses resu l ted  i n  a c r i t i c a l  i n t e r b l a d e  phase angle o f  
135'. The 1.0 percent mass loca ted  a t  88 percent  chord resu l ted  i n  a c r i t i c a l  
i n te rb lade  phase angle o f  180'. 

82 percent  radius.  - Figures 15, 16, and 17, show the  f l u t t e r  Mach number, 
f l u t t e r  frequency, and c r i t i c a l  i n te rb lade  phase angle f o r  t he  var ious added 
concentrated masses respec t ive ly .  F igure 1 5  shows t h a t  inc reas ing  the  mass a t  
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the t .e .  decreases the f l u t t e r  Mach number, whereas increasing the mass a t  the  
1.e.  increases the f l u t t e r  Mach number. A t  the 1.e. and a t  the 51 percent 
chord the 0.1 percent mass gave no s ignif icant  increase i n  the  f l u t t e r  Mach 
number, whereas the 0.5 and 1.0 percent masses d i d  r e s u l t  i n  a higher f l u t t e r  
Mach number. A t  the  51 percent chord the 1.0 percent mass resulted i n  the  
highest f l u t t e r  Mach number for  t h i s  radius s t a t i o n .  A t  the t . e . ,  the  
1 .0  percent mass resulted i n  a f l u t t e r  Mach number of 0.25. 

Figure 16 shows the f l u t t e r  frequency t o  be reduced below the reference 
model by the addition of the concentrated masses a t  the 51 percent chord and a t  
the 1.e.  A t  the t . e . ,  the 0.1 and 0.5 percent masses resulted i n  an increase 
i n  the  f l u t t e r  frequency, the 0.5 percent mass resul t ing i n  the highest value. 
Here, the 1.0 percent mass decreased the f lu t t e r  frequency below t h a t  of the 
reference model. 

Figure 17  shows the c r i t i c a l  interblade phase angle t o  be 225' f o r  a l l  
masses located a t  the 51 percent chord. A t  the  1.e. the 0.1 and 0.5 percent 
masses produced a c r i t i c a l  interblade phase angle of 2 2 5 O ,  whereas the 
1.0 percent mass resulted i n  a c r i t i c a l  interblade phase angle of 180". A t  
the t . e . ,  the  0.5 and 1.0 percent mass produced a c r i t i c a l  interblade phase 
angle of 1 3 5 O ,  whereas the 0.1 percent mass resulted i n  a c r i t i c a l  interblade 
phase angle of 180O. 

CONCLUSION 

This analyt ical  investigation was undertaken t o  determine how the natural  
frequencies,  c r i t i c a l  interblade phase angle, and f l u t t e r  Mach number of a 
propfan would be affected by attaching a concentrated mass of various magni- 
tudes (from 0.1 percent t o  1.0 percent of t o t a l  blade mass) a t  d i f f e r e n t  radial  
and chord locations i n  the t i p  region of the blades. The conclusions per ta in  
t o  the SR3C-X2 model propfan f o r  the limited number of d i f fe ren t  concentrated 
masses and geometric or grid point locations used. A l t h o u g h  the scope of the 
study i s  l imited,  the conclusions are important i n  t h a t  they give some insight  
i n t o  mass e f f e c t s  and lay the ground work for  fu ture  research i n  t h i s  area.  
The conclusions from t h i s  analyt ical  invest igat ion a re  given below. 

1 .  The r e s u l t s  show t h a t  any mass on the order o f  0.1 percent of the blade 
mass or  g r e a t e r ,  mounted i n  the t i p  region o f  the blade will  e f f e c t  the f l i g h t  
f l u t t e r  Mach number. 

2.  The f l i g h t  f l u t t e r  Mach number i s  sens i t ive  t o  the change i n  natural  
mode shapes, which a re  i n  turn sensi t ive t o  changes i n  mass d i s t r i b u t i o n .  

3. In general the addition of the concentrated masses reduced the f i r s t ,  
second, and th i rd  mode natural frequencies. However, the th i rd  mode natural  
frequency increased s l i g h t l y  by the a d d i t i o n  of mass a t  the 51 percent chord 
a t  the 100 percent radius. 

4 .  The f l u t t e r  Mach number decreased as the mass was moved from the 
leading edge towards the t r a i l i n g  edge except when the 1 .0  percent mass was 
located a t  the t . e .  a t  the 94 percent radius s t a t i o n .  Except for  t h i s  one 
case,  the e f f e c t s  of s t a t i c  unbalance a r e  l ike those for  a typical fixed w i n g  
sect ion.  
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5. It appears that locating a mass near the tip region at the 1.e. is 
beneficial for the delay of flutter. 

6. Even though m a s s  balancing was not performed in this investigation, it 
can be inferred from the results of this study that mass balancing would be a 
feasible method for the delay of flutter. 
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TABLE 1. - SUMMARY OF CASES STUDIEO BY PERCENT MASS OF 

COMPOSITE BLADE (6950 RPM. BLAOE SETTING 

ANGLE 56.4". BLADE MASS 161 9) 

I P e r c e n t  I P e r c e n t  c h o r d  

13 
r a d i u s  

1.0.  0.5, 

0 1 !3: 1 1 . 0 ,  0.5,  1 1 .0  
0.2.  0.1 
1.0. 0.5, 

0.1 

51 

1.0, 0 . 5 .  
0.1 

1 .0 ,  0.5,  
0.1 

1.0. 0 . 5 ,  
0.1 

1.0. 0.5.  
0.1 

1.0, 0.5, 
0.1 

1.0. 0.5, 
0.1 

TABLE 11. - NATURAL FREQUENCIES (CPS)  

WITH AND WITHOUT ADOLD MASS AT 

100 PERCENT RADIUS (6950  RPM. 

BLADE SETTING ANGLE 56.4') 

, I /  

I 1 3  I 220 1401 
0.5 215 398 I ;A I 205 I 3 6 1  

1 3  227 401 
0.1 1 1 226 1405 

224 396 
I I I  

aNo c o n c e n t r a t e d  mars. 

- 
3 

101 
- 

- 
608 
107 
510 

652 
704 
606 

692 
702 
661 

- 

- 

- 
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TABLE I l l .  - NATURAL FREQUENCIES (CPS) 

Y I T H  AND YITHDUT ADDED MASS AT 

94 PERCENT RADIUS (6950 RPM. 

BLADE SETTING ANGLE 56.4') 

218 372 611 

Reference 
modela 

0 225 400 671 

200 326 540 
1 0.5 1 l;; I 2 2 1  1405 I 6 9 1  I 

0 228 406 695 
227 407 699 1 '" I 1;; I 223 I 3 9 0  1 6 5 4  1 

TABLE I V .  - NATURAL FREQUENCILS (CPS) 

WITH AND Y l T H O U l  ADDED MASS A1 

62 PERCEnl RADIUS (6950 RPM, 

BLADE SLTllNG ANGLE 56.4")  

from 1.e. 

Reference 
modela 

1 1 . 0  I lCj; 0 1 2 2 5 ! 4 0 3 ! 6 8 7 )  221 393 700 

201 339 596 
I 1 1 1  

1 0 I228 1400  I 1 0 1  I 0.5 1 I 2 2 6  I 4 0 5  I 694 1 
215 366 635 

aNo concen t ra ted  mass 
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FIGURE 2 . -  MASS LOCATIONS ON SR3C-X2 BLADE. 
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FIGURE 3.- NATURAL MODE CONTOURS OF CONSTANT Y 
CONCENTRATED MASS (6950 RPM. BLADE SETTING ANGLE 56.4 DEG). 

DISPLACEMENT AND FREQUENCIES OF THE SR3C-X2 WITH NO 

MODE 1 MODE 2 

FIGURE 4 . -  NATURAL MODE CONTOURS OF CONSTANT Y DISPLACEMENT AND 
FREOUENCIES WHEN 0.5% MASS IS LOCATED AT 13% CHORD AT THE 100% 
RADIUS (6950 RPM, BLADE SETTING ANGLE 56.4 DEG). 
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FIGURE 5 . -  NATURAL MODE CONTOURS OF CONSTANT Y DISPLACEMEN1 
AND FREQUENCIES WHEN 0.5% MASS IS LOCATED AT 51% CHORD AT 
THE 100% RADIUS (6950 RPH. BLADE SETTING ANGLE 56.4 DEG). 

MODE 1 MODE 2 

FIGURE 6.- NATURAL MODE CONTOURS OF CONSTANT Y DISPLACEMENT 
AND FREQUENCIES WHEN 0.5% MASS IS LOCATED AT 88% CHORD AT THE 
100% RADIUS (6950 RPM, BLADE SETTING ANGLE 56.4 DEG). 
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FIGURE 7.- NODAL LINES OF THE F I R S T  AND SECOND MODES WHEN THE 1.0% 
MASS WAS LOCATED AT 100% CHORD AT THE 94% RADIUS (6950 RPM. BLADE 
SETTING ANGLE 56.4 DEG). 
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FIGURE 8.- BLADE NUMBERING CONVENTION. 
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