1,140 research outputs found
IL-23 produced by CNS-resident cells controls T cell encephalitogenicity during the effector phase of experimental autoimmune encephalomyelitis
CNS-resident cells, in particular microglia and macrophages, are a source of inflammatory cytokines during inflammation within the CNS. Expression of IL-23, a recently discovered cytokine, has been shown to be critical for the development of experimental autoimmune encephalomyelitis (EAE) in mice. Expression of the p40 subunit of IL-12 and IL-23 by microglia has been shown in situ and in vitro, but direct evidence for a functional significance of p40 expression by CNS cells during an immune response in vivo is still lacking. Here we report that p40 plays a critical role in maintaining encephalitogenicity during the disease course. By using irradiation bone marrow chimeras, we have generated mice in which p40 is deleted from the CNS parenchyma but not the systemic immune compartment. Our studies show that p40 expressed by CNS-endogenous cells is critical for the development of myelin oligodendrocyte glycoprotein-induced EAE. In spite of the reduced clinical disease, the absence of p40 from the CNS has little impact on the degree of inflammation. Expression profiles of the CNS lesions show an increase in Th2 cytokines when compared with mice that develop EAE in the presence of CNS IL-12 and/or IL-23. Taken together, our data demonstrate that p40 expression by CNS-resident cells forms the basis for the Th1 bias of the CNS
Short-lived and Long-lived Bone Marrow Plasma Cells Are Derived from a Novel Precursor Population
The contribution that long-lived bone marrow (BM) plasma cells (PCs) provide to enduring humoral immunity has been underscored by a number of recent studies. However, little is known about the immediate precursors that give rise to long-lived PCs in the BM of immune individuals. We have identified subsets of antigen-experienced B cells within the immune BM that are precursors to PCs. These PC precursors arise in the BM 14 days after immunization and persist for greater than 9 months. Phenotypically distinct subsets of PC precursors give rise to short-lived or long-lived PCs. The differentiation of PC precursors to PCs occurs in the absence of antigen and requires cell division. The functional significance of these newly identified PC precursors in the persistence and quality of the humoral immune response is discussed
Selective Involvement of the Checkpoint Regulator VISTA in Suppression of B-Cell, but Not T-Cell, Responsiveness by Monocytic Myeloid-Derived Suppressor Cells from Mice Infected with an Immunodeficiency-Causing Retrovirus
Inhibition of T-cell responses in tumor microenvironments by myeloid-derived suppressor cells (MDSCs) is widely accepted. We demonstrated augmentation of monocytic MDSCs whose suppression of not only T-cell, but also B-cell, responsiveness paralleled the immunodeficiency during LP-BM5 retrovirus infection. MDSCs inhibited T cells by inducible nitric oxide synthase (iNOS)/nitric oxide (NO), but uniquely, inhibition of B cells was ~50% dependent each on iNOS/NO and the MDSC-expressed negative-checkpoint regulator VISTA. Blockade with a combination of iNOS/NO and VISTA caused additive or synergistic abrogation of MDSC-mediated suppression of B-cell responsiveness
Diversity of gut microflora is required for the generation of B cell with regulatory properties in a skin graft model
B cells have been reported to promote graft rejection through alloantibody production. However, there is growing evidence that B cells can contribute to the maintenance of tolerance. Here, we used a mouse model of MHC-class I mismatched skin transplantation to investigate the contribution of B cells to graft survival. We demonstrate that adoptive transfer of B cells prolongs skin graft survival but only when the B cells were isolated from mice housed in low sterility "conventional" (CV) facilities and not from mice housed in pathogen free facilities (SPF). However, prolongation of skin graft survival was lost when B cells were isolated from IL-10 deficient mice housed in CV facilities. The suppressive function of B cells isolated from mice housed in CV facilities correlated with an anti-inflammatory environment and with the presence of a different gut microflora compared to mice maintained in SPF facilities. Treatment of mice in the CV facility with antibiotics abrogated the regulatory capacity of B cells. Finally, we identified transitional B cells isolated from CV facilities as possessing the regulatory function. These findings demonstrate that B cells, and in particular transitional B cells, can promote prolongation of graft survival, a function dependent on licensing by gut microflora
Whole-Genome Sequencing and Concordance Between Antimicrobial Susceptibility Genotypes and Phenotypes of Bacterial Isolates Associated with Bovine Respiratory Disease.
Extended laboratory culture and antimicrobial susceptibility testing timelines hinder rapid species identification and susceptibility profiling of bacterial pathogens associated with bovine respiratory disease, the most prevalent cause of cattle mortality in the United States. Whole-genome sequencing offers a culture-independent alternative to current bacterial identification methods, but requires a library of bacterial reference genomes for comparison. To contribute new bacterial genome assemblies and evaluate genetic diversity and variation in antimicrobial resistance genotypes, whole-genome sequencing was performed on bovine respiratory disease-associated bacterial isolates (Histophilus somni, Mycoplasma bovis, Mannheimia haemolytica, and Pasteurella multocida) from dairy and beef cattle. One hundred genomically distinct assemblies were added to the NCBI database, doubling the available genomic sequences for these four species. Computer-based methods identified 11 predicted antimicrobial resistance genes in three species, with none being detected in M. bovis While computer-based analysis can identify antibiotic resistance genes within whole-genome sequences (genotype), it may not predict the actual antimicrobial resistance observed in a living organism (phenotype). Antimicrobial susceptibility testing on 64 H. somni, M. haemolytica, and P. multocida isolates had an overall concordance rate between genotype and phenotypic resistance to the associated class of antimicrobials of 72.7% (P < 0.001), showing substantial discordance. Concordance rates varied greatly among different antimicrobial, antibiotic resistance gene, and bacterial species combinations. This suggests that antimicrobial susceptibility phenotypes are needed to complement genomically predicted antibiotic resistance gene genotypes to better understand how the presence of antibiotic resistance genes within a given bacterial species could potentially impact optimal bovine respiratory disease treatment and morbidity/mortality outcomes
Disrupted Maturation of the Microbiota and Metabolome among Extremely Preterm Infants with Postnatal Growth Failure
Growth failure during infancy is a major global problem that has adverse effects on long-term health and neurodevelopment. Preterm infants are disproportionately affected by growth failure and its effects. Herein we found that extremely preterm infants with postnatal growth failure have disrupted maturation of the intestinal microbiota, characterized by persistently low diversity, dominance of pathogenic bacteria within the Enterobacteriaceae family, and a paucity of strictly anaerobic taxa including Veillonella relative to infants with appropriate postnatal growth. Metabolomic profiling of infants with growth failure demonstrated elevated serum acylcarnitines, fatty acids, and other byproducts of lipolysis and fatty acid oxidation. Machine learning algorithms for normal maturation of the microbiota and metabolome among infants with appropriate growth revealed a pattern of delayed maturation of the microbiota and metabolome among infants with growth failure. Collectively, we identified novel microbial and metabolic features of growth failure in preterm infants and potentially modifiable targets for intervention
Dark Energy or Apparent Acceleration Due to a Relativistic Cosmological Model More Complex than FLRW?
We use the Szekeres inhomogeneous relativistic models in order to fit
supernova combined data sets. We show that with a choice of the spatial
curvature function that is guided by current observations, the models fit the
supernova data almost as well as the LCDM model without requiring a dark energy
component. The Szekeres models were originally derived as an exact solution to
Einstein's equations with a general metric that has no symmetries and are
regarded as good candidates to model the true lumpy universe that we observe.
The null geodesics in these models are not radial. The best fit model found is
also consistent with the requirement of spatial flatness at CMB scales. The
first results presented here seem to encourage further investigations of
apparent acceleration using various inhomogeneous models and other constraints
from CMB and large structure need to be explored next.Comment: 6 pages, 1 figure, matches version published in PR
CD40 Ligand Expression is Defective in a Subset of Patients with Common Variable Immunodeficiency.
Common variable immunodeficiency (CVI) is characterized by hypogammaglobulinemia and recurrent bacterial infections due to failure of CVI B cells to differentiate in vivo into immunoglobulin-secreting plasma cells. We hypothesized that T-cell dysfunction resulting in abnormal contact-mediated B-cell activation may play a prominent role in the failure of CVI B cells to produce specific antibody. We have previously shown that B-cell proliferation and IgE production after stimulation with anti-CD40 and interleukin (IL) 4 were normal in 22 CVI patients evaluated, indicating that CVI B cells respond to signals delivered via CD40. Here we report that CD40 ligand (gp39) mRNA expression by activated lymphocytes from CVI patients (n = 31) as a group was significantly depressed (P \u3c 0.0001) compared with normal controls (n = 32). gp39 mRNA expression by activated lymphocytes from 13 CVI patients fell below the normal control range. T-cell surface expression of functional gp39 protein was correspondingly low in those patients with gp39 mRNA levels below normal control range and normal in patients with gp39 mRNA levels within normal control range. In CVI patients as a group, gp39 mRNA levels correlated with IL-2 mRNA levels (P \u3c 0.002, r = 0.6) and production (P \u3c 0.001, r = 0.7) but not with gene expression or production of other lymphokines evaluated, suggesting an as-yet-undetermined association between gp39 and IL-2 gene regulation. Of the 13 patients whose activated T cells exhibited gp39 mRNA expression below the normal control range, 2 had normal T-cell-derived lymphokine production, whereas the remaining 11 exhibited broader T-cell dysfunction, resulting in IL-2 deficiency, and in some patients deficient production of other lymphokines as well, reflecting a heterogeneity in the underlying mechanisms leading to depressed gp39 expression in these patients. The observation that both gene and surface expression of gp39 by activated T cells is depressed in a subgroup of CVI patients suggests that inefficient signaling via CD40 may be responsible, in part, for failure of B-cell differentiation in these patients
- …