217 research outputs found

    Application of ERTS-1 data to the protection and management of New Jersey's coastal environment

    Get PDF
    ERTS-1 imagery is being used by the New Jersey Department of Environmental Protection (NJDEP) to develop information products that will assist the state in optimally managing its coastal resources and in allocating funds. Interviews with NJDEP personnel have identified significant problem areas in the coastal zone, and the types of remote sensor derived information products that can be used in real-time decision making. Initial analyses of imagery from several successive ERTS-1 orbits have shown the extent, predominant drift, and dispersion characteristics of waste disposal in coastal New Jersey waters. Imagery (MSS Bands 4 and 5) for several orbits, shows that New-York Harbor tidal discharge extending as far south as Long Branch, New Jersey

    Impact of ERTS-1 images on management of New Jersey's coastal zone

    Get PDF
    The thrust of New Jersey's ERTS investigation is development of procedures for operational use of ERTS-1 data by the Department of Environmental Protection in the management of the State's coastal zone. Four major areas of concern were investigated: detection of land use changes in the coastal zone; monitoring of offshore waste disposal; siting of ocean outfalls; and allocation of funds for shore protection. ERTS imagery was not useful for shore protection purposes; it was of limited practical value in the evaluation of offshore waste disposal and ocean outfall siting. However, ERTS imagery shows great promise for operational detection of land use changes in the coastal zone. Some constraints for practical change detection have been identified

    Application of ERTS-1 data to the protection and management of New Jersey's coastal environment

    Get PDF
    The author has identified the following significant results. Rapid access to ERTS data was provided by NASA GSFC for the February 26, 1974 overpass of the New Jersey test site. Forty-seven hours following the overpass computer-compatible tapes were ready for processing at EarthSat. The finished product was ready just 60 hours following the overpass and delivered to the New Jersey Department of Environmental Protection. This operational demonstration has been successful in convincing NJDEP as to the worth of ERTS as an operational monitoring and enforcement tool of significant value to the State. An erosion/ accretion severity index has been developed for the New Jersey shore case study area. Computerized analysis techniques have been used for monitoring offshore waste disposal dumping locations, drift vectors, and dispersion rates in the New York Bight area. A computer shade print of the area was used to identify intensity levels of acid waste. A Litton intensity slice print was made to provide graphic presentation of dispersion characteristics and the dump extent. Continued monitoring will lead to the recommendation and justification of permanent dumping sites which pose no threat to water quality in nearshore environments

    Application of ERTS-1 data to the protection and management of New Jersey's coastal environment

    Get PDF
    The author has identified the following significant results. A Coastal Zone Surveillance Program has been developed in which systematic comparisons of early ERTS-1 images and recently acquired images are regularly made to identify areas where changes have occurred. A methodology for assessing and documenting benefits has been established. Quantification of benefits has been directed toward four candidate areas: shore protection, ocean outfalls, coastal land resources, and offshore waste disposal. A refinement in the change detection analysis procedure has led to greater accuracy in spotting developmental changes in the Coastal Zone. Preliminary conclusions drawn from the Shore Erosion case study indicate that in the northern test area (developed beach) erosion has occurred more often, is generally more severe, and the beach is slower to recover than in the southern test area (natural beach). From these data it appears that it may be possible to define areas most likely to experience further erosion. The assumption of continued erosion in areas that have at one time experienced severe erosion is supported by the simple fact that as a beach narrows wave energy is concentrated on a narrower beach surface. The higher energy condition subsequently results in accelerated erosion

    Seasonal differences in soil CO2 efflux and carbon storage in Ntwetwe Pan, Makgadikgadi Basin, Botswana

    Get PDF
    The carbon cycle in salt pans is complex and poorly understood. Field-based data are needed to improve regional estimates of C storage and land-atmosphere CO2 fluxes from dryland environments where pans are prevalent. This paper provides a first estimate of C stores and CO2 efflux within the salt pan, grassland and woodland of Ntwetwe Pan in the Makgadikgadi Basin, Botswana. C fluxes and stores associated with cyanobacteria-salt crusts are also determined. Total C stores are approximately an order of magnitude greater than on neighbouring Kalahari Sands at 675±41, 760±94 and 274±15 tonsha-1 to 1m depth in the woodland, grassland and salt pan respectively. Most of the C is found as carbonate, with organic C comprising 4.6-10% of total C. CO2 efflux increased with temperature and also increased for a few hours after flooding of the pan surface. Crusts were a small net contributor to CO2 efflux in the dry season but could be a net CO2 sink in the wet season. The biogeochemistry of the sediment is likely to facilitate rapid conversion of organic C from aquatic organisms, biological crusts and algal mats into inorganic carbonates. Although further work is required to improve estimates of the spatial and temporal distribution of C, our data have demonstrated the substantial C store with the Makgadikgadi environment and the important role of biological crusts in the C cycle
    corecore