24 research outputs found

    Variable EBV DNA Load Distributions and Heterogeneous EBV mRNA Expression Patterns in the Circulation of Solid Organ versus Stem Cell Transplant Recipients

    Get PDF
    Epstein-Barr virus (EBV) driven post-transplant lymphoproliferative disease (PTLD) is a heterogeneous and potentially lifethreatening condition. Early identification of aberrant EBV activity may prevent progression to B-cell lymphoma. We measured EBV DNA load and RNA profiles in plasma and cellular blood compartments of stem cell transplant (SCT; n = 5), solid organ transplant recipients (SOT; n = 15), and SOT having chronic elevated EBV-DNA load (n = 12). In SCT, EBV DNA was heterogeneously distributed, either in plasma or leukocytes or both. In SOT, EBV DNA load was always cell associated, predominantly in B cells, but occasionally in T cells (CD4 and CD8) or monocytes. All SCT with cell-associated EBV DNA showed BARTs and EBNA1 expression, while LMP1 and LMP2 mRNA was found in 1 and 3 cases, respectively. In SOT, expression of BARTs was detected in all leukocyte samples. LMP2 and EBNA1 mRNA was found in 5/15 and 2/15, respectively, but LMP1 mRNA in only 1, coinciding with severe PTLD and high EBV DNA. Conclusion: EBV DNA is differently distributed between white cells and plasma in SOT versus SCT. EBV RNA profiling in blood is feasible and may have added value for understanding pathogenic virus activity in patients with elevated EBV-DNA

    Immune monitoring with iTAg MHCTetramers for prediction of recurrent or persistent cytomegalovirus infection or disease in allogeneic hematopoietic stem cell transplant recipients: A prospective multicenter study

    No full text
    Cytomegalovirus (CMV) infection is an important cause of morbidity and mortality in hematopoietic stem cell transplant recipients despite the introduction of posttransplantation viral monitoring and preemptive antiviral therapy. We evaluated the use of HLA class I tetramers in monitoring CMV-specific T-cell recovery to predict patients at risk for CMV-related complications. This prospective multicenter clinical trial obtained nearly 1400 tetramer/allele results in more than 800 biweekly blood samples from 83 patients monitored for 1 year after transplantation. Major HLA types were included (A*0101, A*0201, B*0702, B*0801, B*3501). iTAg MHC Tetramers (Beckman Coulter) were used to enumerate CMV-specific CD8+T cells by flow cytometry using a single-platform absolute counting method. Assay variability was 8% or less and results were available within 3 hours. Delayed recovery of CMV-specific T cells (<7 cells/ÎŒL in all blood samples during the first 65 days after transplantation) was found to be a significant risk factor for CMV-related complications; these patients were more likely to develop recurrent or persistent CMV infection (relative risk 2.6, CI 1.2-5.8, P=.01) than patients showing rapid recovery, which was associated with protection from CMV-related complications (P = .004). CMV tetramer-based immune monitoring, in conjunction with virologic monitoring, can be an important new tool to assess risk of CMV-related complications and to guide preemptive therapeutic choices

    Aviation and the environment Using economic instruments

    No full text
    SIGLEAvailable from British Library Document Supply Centre- DSC:m03/26786 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A Study

    Full text link
    PURPOSE: Half the patients with acute myeloid leukemia (AML) who achieve complete remission (CR), ultimately relapse. Residual treatment-surviving leukemia is considered responsible for the outgrowth of AML. In many retrospective studies, detection of minimal residual disease (MRD) has been shown to enable identification of these poor-outcome patients by showing its independent prognostic impact. Most studies focus on molecular markers or analyze data in retrospect. This study establishes the value of immunophenotypically assessed MRD in the context of a multicenter clinical trial in adult AML with sample collection and analysis performed in a few specialized centers. PATIENTS AND METHODS: In adults (younger than age 60 years) with AML enrolled onto the Dutch-Belgian Hemato-Oncology Cooperative Group/Swiss Group for Clinical Cancer Research Acute Myeloid Leukemia 42A study, MRD was evaluated in bone marrow samples in CR (164 after induction cycle 1, 183 after cycle 2, 124 after consolidation therapy). RESULTS: After all courses of therapy, low MRD values distinguished patients with relatively favorable outcome from those with high relapse rate and adverse relapse-free and overall survival. In the whole patient group and in the subgroup with intermediate-risk cytogenetics, MRD was an independent prognostic factor. Multivariate analysis after cycle 2, when decisions about consolidation treatment have to be made, confirmed that high MRD values (> 0.1% of WBC) were associated with a higher risk of relapse after adjustment for consolidation treatment time-dependent covariate risk score and early or later CR. CONCLUSION: In future treatment studies, risk stratification should be based not only on risk estimation assessed at diagnosis but also on MRD as a therapy-dependent prognostic factor
    corecore