13,165 research outputs found
A cluster expansion approach to renormalization group transformations
The renormalization group (RG) approach is largely responsible for the
considerable success which has been achieved in developing a quantitative
theory of phase transitions. This work treats the rigorous definition of the RG
map for classical Ising-type lattice systems in the infinite volume limit at
high temperature. A cluster expansion is used to justify the existence of the
partial derivatives of the renormalized interaction with respect to the
original interaction. This expansion is derived from the formal expressions,
but it is itself well-defined and convergent. Suppose in addition that the
original interaction is finite-range and translation-invariant. We will show
that the matrix of partial derivatives in this case displays an approximate
band property. This in turn gives an upper bound for the RG linearization.Comment: 13 page
Higher-Dimensional Bulk Wormholes and their Manifestations in Brane Worlds
There is nothing to prevent a higher-dimensional anti-de Sitter bulk
spacetime from containing various other branes in addition to hosting our
universe, presumed to be a positive-tension 3-brane. In particular, it could
contain closed, microscopic branes that form the boundary surfaces of void
bubbles and thus violate the null energy condition in the bulk. The possible
existence of such micro branes can be investigated by considering the
properties of the ground state of a pseudo-Wheeler-DeWitt equation describing
brane quantum dynamics in minisuperspace. If they exist, a concentration of
these micro branes could act as a fluid of exotic matter able to support
macroscopic wormholes connecting otherwise distant regions of the bulk. Were
the brane constituting our universe to expand into a region of the bulk
containing such higher-dimensional macroscopic wormholes, they would likely
manifest themselves in our brane as wormholes of normal dimensionality, whose
spontaneous appearance and general dynamics would seem inexplicably peculiar.
This encounter could also result in the formation of baby universes of a
particular type.Comment: 21 pages, 1 figur
Gravitational dynamics in s+1+1 dimensions II. Hamiltonian theory
We develop a Hamiltonian formalism of brane-world gravity, which singles out
two preferred, mutually orthogonal directions. One is a unit twist-free field
of spatial vectors with integral lines intersecting perpendicularly the brane.
The other is a temporal vector field with respect to which we perform the
Arnowitt-Deser-Misner decomposition of the Einstein-Hilbert Lagrangian. The
gravitational variables arise from the projections of the spatial metric and
their canonically conjugated momenta as tensorial, vectorial and scalar
quantities defined on the family of hypersurfaces containing the brane. They
represent the gravitons, a gravi-photon and a gravi-scalar, respectively. From
the action we derive the canonical evolution equations and the constraints for
these gravitational degrees of freedom both on the brane and outside it. By
integrating across the brane, the dynamics also generates the tensorial and
scalar projection of the Lanczos equation. The vectorial projection of the
Lanczos equation arises in a similar way from the diffeomorphism constraint.
Both the graviton and the gravi-scalar are continuous across the brane, however
the momentum of the gravi-vector has a jump, related to the energy transport
(heat flow) on the brane.Comment: 13 page
Thermodynamic of Distorted Reissner-Nordstr\"om Black Holes in Five-dimensions
In this paper, we study mechanics and thermodynamics of distorted,
five-dimensional, electrically charged (non-extremal) black holes on the
example of a static and "axisymmetric" black hole distorted by external,
electrically neutral matter. Such a black hole is represented by the derived
here solution of the Einstein-Maxwell equations which admits an
isometry group. We study the properties of
this distorted black hole.Comment: 7 pages, submitted for the proceedings of the First Karl
Schwarzschild Meeting (Frankfurt, 2013
Deep VLT infrared observations of X-ray Dim Isolated Neutron Stars
X-ray observations have unveiled the existence of a family of radio-quiet
Isolated Neutron Stars whose X-ray emission is purely thermal, hence dubbed
X-ray Dim Isolated Neutron Stars (XDINSs). While optical observations have
allowed to relate the thermal emission to the neutron star cooling and to build
the neutron star surface thermal map, IR observations are critical to pinpoint
a spectral turnover produced by a so far unseen magnetospheric component, or by
the presence of a fallback disk. The detection of such a turnover can provide
further evidence of a link between this class of isolated neutron stars and the
magnetars, which show a distinctive spectral flattening in the IR.
Here we present the deepest IR observations ever of five XDINSs, which we use
to constrain a spectral turnover in the IR and the presence of a fallback disk.
The data are obtained using the ISAAC instrument at the VLT.
For none of our targets it was possible to identify the IR counterpart down
to limiting magnitudes H = 21.5 - 22.9. Although these limits are the deepest
ever obtained for neutron stars of this class, they are not deep enough to rule
out the existence and the nature of a possible spectral flattening in the IR.
We also derive, by using disk models, the upper limits on the mass inflow rate
in a fallback disk. We find the existence of a putative fallback disk
consistent (although not confirmed) with our observations.Comment: 6 pages, 2 figures, accepted by A&A on 26-06-200
Gravitational collapse and evolution of holographic black holes
Gravitational collapse is analyzed in the Brane-World by arguing that
regularity of five-dimensional geodesics require that stars on the brane have
an atmosphere. For the simple case of a spherically symmetric cloud of
non-dissipating dust, conditions are found for which the collapsing star
evaporates and approaches the Hawking behavior as the (apparent) horizon is
being formed. The effective energy of the star vanishes at a finite radius and
the star afterwards re-expands and "anti-evaporates". Israel junction
conditions across the brane (holographically related to the matter trace
anomaly) and the projection of the Weyl tensor on the brane (holographically
interpreted as the quantum back-reaction on the brane metric) contribute to the
total energy as, respectively, an "anti-evaporation" and an "evaporation" term.Comment: 6 pages; Talk given at QG05, Cala Gonone (Italy), September 200
Junction conditions in General Relativity with spin sources
The junction conditions for General Relativity in the presence of domain
walls with intrinsic spin are derived in three and higher dimensions. A stress
tensor and a spin current can be defined just by requiring the existence of a
well defined volume element instead of an induced metric, so as to allow for
generic torsion sources. In general, when the torsion is localized on the
domain wall, it is necessary to relax the continuity of the tangential
components of the vielbein. In fact it is found that the spin current is
proportional to the jump in the vielbein and the stress-energy tensor is
proportional to the jump in the spin connection. The consistency of the
junction conditions implies a constraint between the direction of flow of
energy and the orientation of the spin. As an application, we derive the
circularly symmetric solutions for both the rotating string with tension and
the spinning dust string in three dimensions. The rotating string with tension
generates a rotating truncated cone outside and a flat space-time with
inevitable frame dragging inside. In the case of a string made of spinning
dust, in opposition to the previous case no frame dragging is present inside,
so that in this sense, the dragging effect can be "shielded" by considering
spinning instead of rotating sources. Both solutions are consistently lifted as
cylinders in the four-dimensional case.Comment: 24 pages, no figures, CECS style. References added and misprints
corrected. Published Versio
Inflation from IIB Superstrings with Fluxes
We study the conditions needed to have an early epoch of inflationary
expansion with a potential coming from IIB superstring theory with fluxes
involving two moduli fields. The phenomenology of this potential is different
from the usual hybrid inflation scenario and we analize the possibility that
the system of field equations undergo a period of inflation in three different
regimes with the dynamics modified by a Randall-Sundrum II term in the
Friedmann equation. We find that the system can produce inflation and due to
the modification of the dynamics, a period of accelerated contraction can
follow or preceed this inflationary stage depending on the sign of one of the
parameters of the potential. We discuss on the viability of this model in a
cosmological context.Comment: 10 pages, 6 figure
The irradiated ISM of ULIRGs
The nuclei of ULIRGs harbor massive young stars, an accreting central black
hole, or both. Results are presented for molecular gas that is exposed to
X-rays (1-100 keV, XDRs) and far-ultraviolet radiation (6-13.6 eV, PDRs).
Attention is paid to species like HCO+, HCN, HNC, OH, H2O and CO. Line ratios
of HCN/HCO+ and HNC/HCN discriminate between PDRs and XDRs. Very high J (>10)
CO lines, observable with HIFI/Herschel, discriminate very well between XDRs
and PDRs. In XDRs, it is easy to produce large abundances of warm (T>100 K) H2O
and OH. In PDRs, only OH is produced similarly well.Comment: 5 pages, 6 figures, to appear in: IAU Symposium 242 Astrophysical
Masers and their Environment
[CII] 158m and [NII] 205m emission from IC 342 - Disentangling the emission from ionized and photo-dissociated regions
Aims: We investigate how much of the [CII] emission in the nucleus of the
nearby spiral galaxy IC 342 is contributed by PDRs and by the ionized gas. We
examine the spatial variations of starburst/PDR activity and study the
correlation of the [CII] line with the [NII] 205{\textmu}m emission line coming
exclusively from the HII regions. Methods: We present small maps of [CII] and
[NII] lines recently observed with the GREAT receiver on board SOFIA. In
particular we present a super-resolution method to derive how unresolved,
kinematically correlated structures in the beam contribute to the observed line
shapes. Results: We find that the emission coming from the ionized gas shows a
kinematic component in addition to the general Doppler signature of the
molecular gas. We interpret this as the signature of two bi-polar lobes of
ionized gas expanding out of the galactic plane. We then show how this requires
an adaptation of our understanding of the geometrical structure of the nucleus
of IC~342. Examining the starburst activity we find ratios
between 400 and 1800 in energy units.
Applying predictions from numerical models of HII and PDR regions to derive the
contribution from the ionized phase to the total [CII] emission we find that
35-90% of the observed [CII] intensity stems from the ionized gas if both
phases contribute. Averaged over the central few hundred parsec we find for the
[CII] contribution a HII-to-PDR ratio of 70:30. Conclusions: The ionized gas in
the center of IC 342 contributes more strongly to the overall [CII] emission
than is commonly observed on larger scales and than is predicted. Kinematic
analysis shows that the majority of the [CII] emission is related to the strong
but embedded star formation in the nuclear molecular ring and only marginally
emitted from the expanding bi-polar lobes of ionized gas.Comment: 20 pages spectra available online:
http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/ submitted to and accepted by
A&
- …
