14 research outputs found

    Atomic decomposition of conceptual DFT descriptors: Application to proton transfer reactions

    No full text
    International audienceIn this study, we present an atomic decomposition, in principle exact, at any point on a given reaction path, of the molecular energy, reaction force and reaction flux, which is based on Bader's atoms-in-molecules theory and on PendĂĄs' interacting quantum atoms scheme. This decomposition enables the assessment of the importance and the contribution of each atom or molecular group to these global properties, and may cast the light on the physical factors governing bond formation or bond breaking. The potential use of this partition is finally illustrated by proton transfers in model biological systems

    Optical and electronic activities of biobased films of chitosan/POTE containing gold nanoparticles: Experimental and theoretical analyses

    No full text
    Biobased films consisting of blends of chitosan with poly(octanoic acid 2-thiophen-3-yl-ethyl ester) (POTE), a conducting polymer, and gold nanoparticles (AuNPs) were prepared, and their thermal, morphological and surface potential properties were studied. POTE was dissolved in THE and mixed with an acidified aqueous solution containing chitosan to obtain chitosan/POTE (CS/POTE) films by solution casting. To produce gold nanoparticles in the CS/POTE films (i.e., CS/POTE/AuNP films), an aqueous solution of KAuCl4 salt at fixed concentration was added to the initial chitosan solution. The fabricated biobased films were characterized by spectroscopic techniques (FT-IR and UV-visible), thermogravimetry, contact angle analysis, polarized light microscopy (PLM), field emission scanning electron microscope (FE-SEM) and scanning Kelvin probe force microscopy (SKPFM). The effects of varying POTE composition and the presence of gold nanoparticles in the films were analyzed. For example, the results indicated the existence of interactions between chitosan and POTE, and LPM studies revealed a predominantly amorphous nature of these biobased films. In addition, the optical and surface potential behaviors of the films were examined by UV visible and KPFM techniques. From the UV visible spectra, the optical band gaps were estimated for the samples, and their surface potential maps exhibited differences according to the composition of POTE and the presence of AuNPs. Finally, theoretical electronic calculations provided insight into the contributions of POTE and gold nanoparticles to the electronic activity of the films

    The ANANKE Relative-Energy-Gradient (REG) Method to Automate IQA Analysis over Configurational Change

    No full text
    The large volumes of information that arise from telecommunications and cyberspace systems can be represented by massive digraphs. The size of these graphs are so huge that they are unable to be processed by current technologies. The graphs require new and innovative methods of processing and visualizing. Graph surfaces of hierarchical graph slices have been suggested as a way of representing massive digraphs. In this chapter an approach is presented which involves encoding Lipschitz functions into monotone k-logic functions using symmetric chain decompositions (SeD). This approach proposes to address some of the issues concerning huge graphs by providing memory minimization techniques that can be applied to storing graph surfaces
    corecore