60 research outputs found

    6D Dyonic String With Active Hyperscalars

    Get PDF
    We derive the necessary and sufficient conditions for the existence of a Killing spinor in N=(1,0) gauge supergravity in six dimensions coupled to a single tensor multiplet, vector multiplets and hypermultiplets. These are shown to imply most of the field equations and the remaining ones are determined. In this framework, we find a novel 1/8 supersymmetric dyonic string solution with nonvanishing hypermultiplet scalars. The activated scalars parametrize a 4 dimensional submanifold of a quaternionic hyperbolic ball. We employ an identity map between this submanifold and the internal space transverse to the string worldsheet. The internal space forms a 4 dimensional analog of the Gell-Mann-Zwiebach tear-drop which is noncompact with finite volume. While the electric charge carried by the dyonic string is arbitrary, the magnetic charge is fixed in Planckian units, and hence necessarily non-vanishing. The source term needed to balance a delta function type singularity at the origin is determined. The solution is also shown to have 1/4 supersymmetric AdS_3 x S^3 near horizon limit where the radii are proportional to the electric charge.Comment: 28 pages, latex, minor corrections mad

    Ianus: an Adpative FPGA Computer

    Full text link
    Dedicated machines designed for specific computational algorithms can outperform conventional computers by several orders of magnitude. In this note we describe {\it Ianus}, a new generation FPGA based machine and its basic features: hardware integration and wide reprogrammability. Our goal is to build a machine that can fully exploit the performance potential of new generation FPGA devices. We also plan a software platform which simplifies its programming, in order to extend its intended range of application to a wide class of interesting and computationally demanding problems. The decision to develop a dedicated processor is a complex one, involving careful assessment of its performance lead, during its expected lifetime, over traditional computers, taking into account their performance increase, as predicted by Moore's law. We discuss this point in detail

    Reasons for hospitalizations in patients with type 2 diabetes mellitus in the CANVAS Program:a secondary analysis

    Get PDF
    AIMS: To determine the reasons for hospitalizations in the CANagliflozin cardioVascular Assessment Study (CANVAS) Program and the effects of the sodium glucose co-transporter 2 inhibitor canagliflozin on hospitalization. MATERIALS AND METHODS: A secondary analysis was performed on the CANVAS Program that included 10,142 participants with type 2 diabetes mellitus randomized to canagliflozin or placebo. The primary outcome was total (first plus all recurrent) all-cause hospitalization (ACH). Secondary outcomes were total hospitalizations categorized by the Medical Dictionary for Regulatory Activities hierarchy at the system organ class level, reported by investigators at each center. Outcomes were assessed using negative binomial models. RESULTS: Of the 7115 hospitalizations reported, the most common reasons were cardiac disorders (23.7%), infections and infestations (15.0%), and nervous system disorders (9.0%). The rate of total ACH was lower in the canagliflozin group (n=5795) compared to the placebo group (n=4347): 197.9 versus 215.8 participants per 1000 patient-years, respectively (rate ratio [RR] 0.92; 95% confidence interval [CI] 0.86, 0.98). Canagliflozin reduced the rate of total hospitalizations due to cardiac disorders (RR 0.81; 95% CI 0.75, 0.88). There was no significant difference between the canagliflozin and placebo groups in the rates of total hospitalizations due to infections and infestations (RR 0.96; 95% CI 0.86, 1.02) or nervous system disorders (RR 0.96; 95% CI 0.88, 1.05). CONCLUSIONS: In the CANVAS Program, the most common reasons for hospitalization were cardiac disorders, infections and infestations, and nervous system disorders. Canagliflozin, compared with placebo, reduced the rate of total ACH. This article is protected by copyright. All rights reserved

    Neurite dispersion: a new marker of multiple sclerosis spinal cord pathology?

    Get PDF
    Objective: Conventional magnetic resonance imaging (MRI) of the multiple sclerosis spinal cord is limited by low specificity regarding the underlying pathological processes, and new MRI metrics assessing microscopic damage are required. We aim to show for the first time that neurite orientation dispersion (i.e., variability in axon/dendrite orientations) is a new biomarker that uncovers previously undetected layers of complexity of multiple sclerosis spinal cord pathology. Also, we validate against histology a clinically viable MRI technique for dispersion measurement (neurite orientation dispersion and density imaging,NODDI), to demonstrate the strong potential of the new marker. Methods: We related quantitative metrics from histology and MRI in four post mortem spinal cord specimens (two controls; two progressive multiple sclerosis cases). The samples were scanned at high field, obtaining maps of neurite density and orientation dispersion from NODDI and routine diffusion tensor imaging (DTI) indices. Histological procedures provided markers of astrocyte, microglia, myelin and neurofilament density, as well as neurite dispersion. Results: We report from both NODDI and histology a trend toward lower neurite dispersion in demyelinated lesions, indicative of reduced neurite architecture complexity. Also, we provide unequivocal evidence that NODDI-derived dispersion matches its histological counterpart (P < 0.001), while DTI metrics are less specific and influenced by several biophysical substrates. Interpretation: Neurite orientation dispersion detects a previously undescribed and potentially relevant layer of microstructural complexity of multiple sclerosis spinal cord pathology. Clinically feasible techniques such as NODDI may play a key role in clinical trial and practice settings, as they provide histologically meaningful dispersion indices

    Feasibility of data-driven, model-free quantitative MRI protocol design: application to brain and prostate diffusion-relaxation imaging

    Get PDF
    Purpose: We investigate the feasibility of data-driven, model-free quantitative MRI (qMRI) protocol design on in vivo brain and prostate diffusion-relaxation imaging (DRI). Methods: We select subsets of measurements within lengthy pilot scans, without identifying tissue parameters for which to optimise for. We use the “select and retrieve via direct upsampling” (SARDU-Net) algorithm, made of a selector, identifying measurement subsets, and a predictor, estimating fully-sampled signals from the subsets. We implement both using artificial neural networks, which are trained jointly end-to-end. We deploy the algorithm on brain (32 diffusion-/T1-weightings) and prostate (16 diffusion-/T2-weightings) DRI scans acquired on three healthy volunteers on two separate 3T Philips systems each. We used SARDU-Net to identify sub-protocols of fixed size, assessing reproducibility and testing sub-protocols for their potential to inform multi-contrast analyses via the T1-weighted spherical mean diffusion tensor (T1-SMDT, brain) and hybrid multi-dimensional MRI (HM-MRI, prostate) models, for which sub-protocol selection was not optimised explicitly. Results: In both brain and prostate, SARDU-Net identifies sub-protocols that maximise information content in a reproducible manner across training instantiations using a small number of pilot scans. The sub-protocols support T1-SMDT and HM-MRI multi-contrast modelling for which they were not optimised explicitly, providing signal quality-of-fit in the top 5% against extensive sub-protocol comparisons. Conclusions: Identifying economical but informative qMRI protocols from subsets of rich pilot scans is feasible and potentially useful in acquisition-time-sensitive applications in which there is not a qMRI model of choice. SARDU-Net is demonstrated to be a robust algorithm for data-driven, model-free protocol design

    Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes

    Get PDF
    Recent studies have suggested that bone marrow cells possess a broad differentiation potential, being able to form new liver cells, cardiomyocytes and neurons(1,2). Several groups have attributed this apparent plasticity to 'transdifferentiation'(3-5). Others, however, have suggested that cell fusion could explain these results(6-9). Using a simple method based on Cre/lox recombination to detect cell fusion events, we demonstrate that bone-marrow-derived cells (BMDCs) fuse spontaneously with neural progenitors in vitro. Furthermore, bone marrow transplantation demonstrates that BMDCs fuse in vivo with hepatocytes in liver, Purkinje neurons in the brain and cardiac muscle in the heart, resulting in the formation of multinucleated cells. No evidence of transdifferentiation without fusion was observed in these tissues. These observations provide the first in vivo evidence for cell fusion of BMDCs with neurons and cardiomyocytes, raising the possibility that cell fusion may contribute to the development or maintenance of these key cell types.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/62789/1/nature02069.pd

    Expression of the "stem cell marker" CD133 in pancreas and pancreatic ductal adenocarcinomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>It has been suggested that a small population of cells with unique self-renewal properties and malignant potential exists in solid tumors. Such "cancer stem cells" have been isolated by flow cytometry, followed by xenograft studies of their tumor-initiating properties. A frequently used sorting marker in these experiments is the cell surface protein CD133 (prominin-1). The aim of this work was to examine the distribution of CD133 in pancreatic exocrine cancer.</p> <p>Methods</p> <p>Fifty-one cases of pancreatic ductal adenocarcinomas were clinically and histopathologically evaluated, and immunohistochemically investigated for expression of CD133, cytokeratin 19 and chromogranin A. The results were interpreted on the background of CD133 expression in normal pancreas and other normal and malignant human tissues.</p> <p>Results</p> <p>CD133 positivity could not be related to a specific embryonic layer of organ origin and was seen mainly at the apical/endoluminal surface of non-squamous, glandular epithelia and of malignant cells in ductal arrangement. Cytoplasmic CD133 staining was observed in some non-epithelial malignancies. In the pancreas, we found CD133 expressed on the apical membrane of ductal cells. In a small subset of ductal cells and in cells in centroacinar position, we also observed expression in the cytoplasm. Pancreatic ductal adenocarcinomas showed a varying degree of apical cell surface CD133 expression, and cytoplasmic staining in a few tumor cells was noted. There was no correlation between the level of CD133 expression and patient survival.</p> <p>Conclusion</p> <p>Neither in the pancreas nor in the other investigated organs can CD133 membrane expression alone be a criterion for "stemness". However, there was an interesting difference in subcellular localization with a minor cell population in normal and malignant pancreatic tissue showing cytoplasmic expression. Moreover, since CD133 was expressed in shed ductal cells of pancreatic tumors and was found on the surface of tumor cells in vessels, this molecule may have a potential as clinical marker in patients suffering from pancreatic cancer.</p

    Recruitment and Activation of Pancreatic Stellate Cells from the Bone Marrow in Pancreatic Cancer: A Model of Tumor-Host Interaction

    Get PDF
    BACKGROUND AND AIMS: Chronic pancreatitis and pancreatic cancer are characterised by extensive stellate cell mediated fibrosis, and current therapeutic development includes targeting pancreatic cancer stroma and tumor-host interactions. Recent evidence has suggested that circulating bone marrow derived stem cells (BMDC) contribute to solid organs. We aimed to define the role of circulating haematopoietic cells in the normal and diseased pancreas. METHODS: Whole bone marrow was harvested from male β-actin-EGFP donor mice and transplanted into irradiated female recipient C57/BL6 mice. Chronic pancreatitis was induced with repeat injections of caerulein, while carcinogenesis was induced with an intrapancreatic injection of dimethylbenzanthracene (DMBA). Phenotype of engrafted donor-derived cells within the pancreas was assessed by immunohistochemistry, immunofluorescence and in situ hybridisation. RESULTS: GFP positive cells were visible in the exocrine pancreatic epithelia from 3 months post transplantation. These exhibited acinar morphology and were positive for amylase and peanut agglutinin. Mice administered caerulein developed chronic pancreatitis while DMBA mice exhibited precursor lesions and pancreatic cancer. No acinar cells were identified to be donor-derived upon cessation of cerulein treatment, however rare occurrences of bone marrow-derived acinar cells were observed during pancreatic regeneration. Increased recruitment of BMDC was observed within the desmoplastic stroma, contributing to the activated pancreatic stellate cell (PaSC) population in both diseases. Expression of stellate cell markers CELSR3, PBX1 and GFAP was observed in BMD cancer-associated PaSCs, however cancer-associated, but not pancreatitis-associated BMD PaSCs, expressed the cancer PaSC specific marker CELSR3. CONCLUSIONS: This study demonstrates that BMDC can incorporate into the pancreas and adopt the differentiated state of the exocrine compartment. BMDC that contribute to the activated PaSC population in chronic pancreatitis and pancreatic cancer have different phenotypes, and may play important roles in these diseases. Further, bone marrow transplantation may provide a useful model for the study of tumor-host interactions in cancer and pancreatitis

    The Use of Biomaterials in Islet Transplantation

    Get PDF
    Pancreatic islet transplantation is a therapeutic option to replace destroyed β cells in autoimmune diabetes. Islets are transplanted into the liver via the portal vein; however, inflammation, the required immunosuppression, and lack of vasculature decrease early islet viability and function. Therefore, the use of accessory therapy and biomaterials to protect islets and improve islet function has definite therapeutic potential. Here we review the application of niche accessory cells and factors, as well as the use of biomaterials as carriers or capsules, for pancreatic islet transplantation
    corecore