901 research outputs found

    A Demonstration of the Reactivity—Selectivity Principle for the Thiol—Disulfide Interchange Reaction

    Full text link
    Equilibrium constants for the reaction of aryl thiol anions with hydroxyethyl disulfide have been measured which, along with literature data, demonstrate a slope of 1.21 for a plot of log K S− (R'S‐ + RSSR ⇌ R'SSR + ‐SR) vs pKa. Rate constants were measured also for these endothermic reactions of aryl thiol anions with hydroxyethyl disulfide and also for the exothermic reactions of alkyl thiol anions with the mixed disulfide of mercaptoethanol and 4‐nitro‐2,3,5,6‐tetrafluorothiophenol. These kinetic data, obtained over a range of K S− of 10 21 , show the gradual curvature expected for Hammond postulate type behavior. A quantitative measure of this curvature in terms of the Marcus formalism was carried out for these two data sets along with four others having more moderate values of ΔG. The data were fit with a value for the intrinsic barrier, λ/4 = 11.6 kcal, and a value for the work term W r = 4.0 kcal. A comparison is made of these values with the similar values found for alkyl, proton and acyl transfer reactions. The importance of using a variety of substrates with a series of bases or nucleophiles, rather than a single substrate, is discussed, as are the cause for curvature other than Hammond postulate behavior.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/101845/1/198500126_ftp.pd

    Protracted Conflict

    Get PDF

    Optimierte Bestimmung der unterirdischen Pflanzenbiomasse in Theorie und Praxis

    Get PDF
    Will man den C oder N Eintrag von Pflanzen ermitteln, muss die unterirdische Pflanzenbiomasse möglichst exakt bestimmt werden. Diese besteht aus der Rhizodeposition und dem Wurzelsystem einer Pflanze. Als Rhizodeposition wird die Abgabe von organischen und anorganischen Verbindungen bezeichnet. Sie setzt sich unter anderem aus Wurzelfragmenten, Wurzelrandzellen, Wurzelexudaten und Lysaten zusammen. Auf Grund einer fehlenden Wurzelraumbegrenzung, ist die Erfassung des vollstĂ€ndigen Wurzelsystems einer Pflanze im Freiland problematisch. Zur Quantifizierung von Wurzelsystemen sind jedoch Freilandversuche stets GefĂ€ĂŸversuchen vorzuziehen, da nur so ein ungestörtes Wurzelwachstum erreicht werden kann. Als Konsequenz lassen sich unterschiedliche Wurzel-Spross-VerhĂ€ltnisse in GefĂ€ĂŸ- und Freilandversuchen feststellen. Verlagerungsprozesse innerhalb der Pflanze können zusĂ€tzlich die Berechnung der Rhizodeposition beeinflussen und so zur Über- oder UnterschĂ€tzung der unterirdischen Pflanzenbiomasse fĂŒhren. Ziel war daher ein Beprobungsschema zu entwickeln, welches es ermöglicht die Wurzelbiomasse im Freiland zu erfassen und unterschiedliche Berechnungsmethoden der Rhizodeposition zu vergleichen. HierfĂŒr wurden sowohl im GefĂ€ĂŸ als auch im Freiland Erbsen mittels Dochtmethode mit multiplen 13C und 15N-Pulsen markiert, wodurch eine annĂ€hernd kontinuierliche Markierung simuliert wurde. Die Wurzelbiomasse der Erbse wurde im Freiland bestimmt, indem Unterproben mit einem definierten Volumen in 3 festgelegten Positionen im Bestand genommen wurden (direkt auf einer Pflanze; zwischen 2 Pflanzen in der Reihe; in der Mitte von 4 Pflanzen zwischen 2 Reihen). Durch die unterschiedliche Gewichtung der Positionen, die sich aus dem Beprobungsdurchmesser und dem Pflanze-/Reihenabstand ergaben, konnte die vollstĂ€ndige Wurzelbiomasse bestimmt werden. Die Rhizodeposition wurde mit einer Massenbilanz (1) und mit der Janzen und Bruinsma Methode (2) ermittelt. Zum Zeitpunkt der BlĂŒte waren die Wurzelbiomasse und das Wurzel-Spross-VerhĂ€ltnis im Feld um ein vielfaches GrĂ¶ĂŸer verglichen mit dem GefĂ€ĂŸ. Bei der Berechnung nach Janzen und Bruinsma können Verlagerungsprozesse wĂ€hrend der BlĂŒte zur ÜberschĂ€tzung der Rhizodeposition fĂŒhren. Erfolgt eine kontinuierliche Markierung ĂŒber den gesamten Vegetationsverlauf, so kann die Rhizodeposition am Kulturende sowohl nach Janzen und Bruinsma als auch mit der Massenbilanz berechnet werden

    Antarctic Surface Reflectivity Measurements from the ANITA-3 and HiCal-1 Experiments

    Get PDF
    The primary science goal of the NASA-sponsored ANITA project is measurement of ultra-high energy neutrinos and cosmic rays, observed via radio-frequency signals resulting from a neutrino- or cosmic ray- interaction with terrestrial matter (atmospheric or ice molecules, e.g.). Accurate inference of the energies of these cosmic rays requires understanding the transmission/reflection of radio wave signals across the ice-air boundary. Satellite-based measurements of Antarctic surface reflectivity, using a co-located transmitter and receiver, have been performed more-or-less continuously for the last few decades. Satellite-based reflectivity surveys, at frequencies ranging from 2--45 GHz and at near-normal incidence, yield generally consistent reflectivity maps across Antarctica. Using the Sun as an RF source, and the ANITA-3 balloon borne radio-frequency antenna array as the RF receiver, we have also measured the surface reflectivity over the interval 200-1000 MHz, at elevation angles of 12-30 degrees, finding agreement with the Fresnel equations within systematic errors. To probe low incidence angles, inaccessible to the Antarctic Solar technique and not probed by previous satellite surveys, a novel experimental approach ("HiCal-1") was devised. Unlike previous measurements, HiCal-ANITA constitute a bi-static transmitter-receiver pair separated by hundreds of kilometers. Data taken with HiCal, between 200--600 MHz shows a significant departure from the Fresnel equations, constant with frequency over that band, with the deficit increasing with obliquity of incidence, which we attribute to the combined effects of possible surface roughness, surface grain effects, radar clutter and/or shadowing of the reflection zone due to Earth curvature effects.Comment: updated to match publication versio
    • 

    corecore