250,872 research outputs found
Solutions of special asymptotics to the Einstein constraint equations
We construct solutions with prescribed asymptotics to the Einstein constraint
equations using a cut-off technique. Moreover, we give various examples of
vacuum asymptotically flat manifolds whose center of mass and angular momentum
are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear
  in Class. Quantum Gra
Bottom-up retinotopic organization supports top-down mental imagery
Finding a path between locations is a routine task in daily life. Mental navigation is often used to plan a route to a destination that is not visible from the current location. We first used functional magnetic resonance imaging (fMRI) and surface-based averaging methods to find high-level brain regions involved in imagined navigation between locations in a building very familiar to each participant. This revealed a mental navigation network that includes the precuneus, retrosplenial cortex (RSC), parahippocampal place area (PPA), occipital place area (OPA), supplementary motor area (SMA), premotor cortex, and areas along the medial and anterior intraparietal sulcus. We then visualized retinotopic maps in the entire cortex using wide-field, natural scene stimuli in a separate set of fMRI experiments. This revealed five distinct visual streams or ‘fingers’ that extend anteriorly into middle temporal, superior parietal, medial parietal, retrosplenial and ventral occipitotemporal cortex. By using spherical morphing to overlap these two data sets, we showed that the mental navigation network primarily occupies areas that also contain retinotopic maps. Specifically, scene-selective regions RSC, PPA and OPA have a common emphasis on the far periphery of the upper visual field. These results suggest that bottom-up retinotopic organization may help to efficiently encode scene and location information in an eye-centered reference frame for top-down, internally generated mental navigation. This study pushes the border of visual cortex further anterior than was initially expected
Designing community care systems with AUML
This paper describes an approach to developing an appropriate agent environment appropriate for use in community care applications. Key to its success is that software designers collaborate with environment builders to provide the levels of cooperation and support required within an integrated agent–oriented community system. Agent-oriented Unified Modeling Language (AUML) is a practical approach to the analysis, design, implementation and management of such an agent-based system, whilst providing the power and expressiveness necessary to support the specification, design and organization of a health care service.  The background of an agent-based community care application to support the elderly is described.  Our approach to building agent–oriented software development solutions emphasizes the importance of AUML as a fundamental initial step in producing more general agent–based architectures. This approach aims to present an effective methodology for an agent software development process using a service oriented approach, by addressing the agent decomposition, abstraction, and organization characteristics, whilst reducing its complexity by exploiting AUML’s productivity potential.   </p
Adaptive Electricity Scheduling in Microgrids
Microgrid (MG) is a promising component for future smart grid (SG)
deployment. The balance of supply and demand of electric energy is one of the
most important requirements of MG management. In this paper, we present a novel
framework for smart energy management based on the concept of
quality-of-service in electricity (QoSE). Specifically, the resident
electricity demand is classified into basic usage and quality usage. The basic
usage is always guaranteed by the MG, while the quality usage is controlled
based on the MG state. The microgrid control center (MGCC) aims to minimize the
MG operation cost and maintain the outage probability of quality usage, i.e.,
QoSE, below a target value, by scheduling electricity among renewable energy
resources, energy storage systems, and macrogrid. The problem is formulated as
a constrained stochastic programming problem. The Lyapunov optimization
technique is then applied to derive an adaptive electricity scheduling
algorithm by introducing the QoSE virtual queues and energy storage virtual
queues. The proposed algorithm is an online algorithm since it does not require
any statistics and future knowledge of the electricity supply, demand and price
processes. We derive several "hard" performance bounds for the proposed
algorithm, and evaluate its performance with trace-driven simulations. The
simulation results demonstrate the efficacy of the proposed electricity
scheduling algorithm.Comment: 12 pages, extended technical repor
Chance Constrained Optimization for Targeted Internet Advertising
We introduce a chance constrained optimization model for the fulfillment of
guaranteed display Internet advertising campaigns. The proposed formulation for
the allocation of display inventory takes into account the uncertainty of the
supply of Internet viewers. We discuss and present theoretical and
computational features of the model via Monte Carlo sampling and convex
approximations. Theoretical upper and lower bounds are presented along with a
numerical substantiation
- …
