250,872 research outputs found

    Supporting Online Social Networks

    No full text

    Solutions of special asymptotics to the Einstein constraint equations

    Full text link
    We construct solutions with prescribed asymptotics to the Einstein constraint equations using a cut-off technique. Moreover, we give various examples of vacuum asymptotically flat manifolds whose center of mass and angular momentum are ill-defined.Comment: 13 pages; the error in Lemma 3.5 fixed and typos corrected; to appear in Class. Quantum Gra

    Bottom-up retinotopic organization supports top-down mental imagery

    Get PDF
    Finding a path between locations is a routine task in daily life. Mental navigation is often used to plan a route to a destination that is not visible from the current location. We first used functional magnetic resonance imaging (fMRI) and surface-based averaging methods to find high-level brain regions involved in imagined navigation between locations in a building very familiar to each participant. This revealed a mental navigation network that includes the precuneus, retrosplenial cortex (RSC), parahippocampal place area (PPA), occipital place area (OPA), supplementary motor area (SMA), premotor cortex, and areas along the medial and anterior intraparietal sulcus. We then visualized retinotopic maps in the entire cortex using wide-field, natural scene stimuli in a separate set of fMRI experiments. This revealed five distinct visual streams or ‘fingers’ that extend anteriorly into middle temporal, superior parietal, medial parietal, retrosplenial and ventral occipitotemporal cortex. By using spherical morphing to overlap these two data sets, we showed that the mental navigation network primarily occupies areas that also contain retinotopic maps. Specifically, scene-selective regions RSC, PPA and OPA have a common emphasis on the far periphery of the upper visual field. These results suggest that bottom-up retinotopic organization may help to efficiently encode scene and location information in an eye-centered reference frame for top-down, internally generated mental navigation. This study pushes the border of visual cortex further anterior than was initially expected

    Designing community care systems with AUML

    Get PDF
    This paper describes an approach to developing an appropriate agent environment appropriate for use in community care applications. Key to its success is that software designers collaborate with environment builders to provide the levels of cooperation and support required within an integrated agent–oriented community system. Agent-oriented Unified Modeling Language (AUML) is a practical approach to the analysis, design, implementation and management of such an agent-based system, whilst providing the power and expressiveness necessary to support the specification, design and organization of a health care service. The background of an agent-based community care application to support the elderly is described. Our approach to building agent–oriented software development solutions emphasizes the importance of AUML as a fundamental initial step in producing more general agent–based architectures. This approach aims to present an effective methodology for an agent software development process using a service oriented approach, by addressing the agent decomposition, abstraction, and organization characteristics, whilst reducing its complexity by exploiting AUML’s productivity potential. </p

    Adaptive Electricity Scheduling in Microgrids

    Full text link
    Microgrid (MG) is a promising component for future smart grid (SG) deployment. The balance of supply and demand of electric energy is one of the most important requirements of MG management. In this paper, we present a novel framework for smart energy management based on the concept of quality-of-service in electricity (QoSE). Specifically, the resident electricity demand is classified into basic usage and quality usage. The basic usage is always guaranteed by the MG, while the quality usage is controlled based on the MG state. The microgrid control center (MGCC) aims to minimize the MG operation cost and maintain the outage probability of quality usage, i.e., QoSE, below a target value, by scheduling electricity among renewable energy resources, energy storage systems, and macrogrid. The problem is formulated as a constrained stochastic programming problem. The Lyapunov optimization technique is then applied to derive an adaptive electricity scheduling algorithm by introducing the QoSE virtual queues and energy storage virtual queues. The proposed algorithm is an online algorithm since it does not require any statistics and future knowledge of the electricity supply, demand and price processes. We derive several "hard" performance bounds for the proposed algorithm, and evaluate its performance with trace-driven simulations. The simulation results demonstrate the efficacy of the proposed electricity scheduling algorithm.Comment: 12 pages, extended technical repor

    Chance Constrained Optimization for Targeted Internet Advertising

    Full text link
    We introduce a chance constrained optimization model for the fulfillment of guaranteed display Internet advertising campaigns. The proposed formulation for the allocation of display inventory takes into account the uncertainty of the supply of Internet viewers. We discuss and present theoretical and computational features of the model via Monte Carlo sampling and convex approximations. Theoretical upper and lower bounds are presented along with a numerical substantiation
    corecore