2,094 research outputs found

    The ultimate tactics of self-referential systems

    Full text link
    Mathematics is usually regarded as a kind of language. The essential behavior of physical phenomena can be expressed by mathematical laws, providing descriptions and predictions. In the present essay I argue that, although mathematics can be seen, in a first approach, as a language, it goes beyond this concept. I conjecture that mathematics presents two extreme features, denoted here by {\sl irreducibility} and {\sl insaturation}, representing delimiters for self-referentiality. These features are then related to physical laws by realizing that nature is a self-referential system obeying bounds similar to those respected by mathematics. Self-referential systems can only be autonomous entities by a kind of metabolism that provides and sustains such an autonomy. A rational mind, able of consciousness, is a manifestation of the self-referentiality of the Universe. Hence mathematics is here proposed to go beyond language by actually representing the most fundamental existence condition for self-referentiality. This idea is synthesized in the form of a principle, namely, that {\sl mathematics is the ultimate tactics of self-referential systems to mimic themselves}. That is, well beyond an effective language to express the physical world, mathematics uncovers a deep manifestation of the autonomous nature of the Universe, wherein the human brain is but an instance.Comment: 9 pages. This essay received the 4th. Prize in the 2015 FQXi essay contest: "Trick or Truth: the Mysterious Connection Between Physics and Mathematics

    Design study for LANDSAT D attitude control system

    Get PDF
    A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed

    Design study for LANDSAT-D attitude control system

    Get PDF
    The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse

    Long-term observations of Uranus and Neptune at 90 GHz with the IRAM 30m telescope - (1985 -- 2005)

    Full text link
    The planets Uranus and Neptune with small apparent diameters are primary calibration standards. We investigate their variability at ~90 GHz using archived data taken at the IRAM 30m telescope during the 20 years period 1985 to 2005. We calibrate the planetary observations against non-variable secondary standards (NGC7027, NGC7538, W3OH, K3-50A) observed almost simultaneously. Between 1985 and 2005, the viewing angle of Uranus changed from south-pole to equatorial. We find that the disk brightness temperature declines by almost 10% (~2sigma) over this time span indicating that the south-pole region is significantly brighter than average. Our finding is consistent with recent long-term radio observations at 8.6 GHz by Klein & Hofstadter (2006). Both data sets do moreover show a rapid decrease of the Uranus brightness temperature during the year 1993, indicating a temporal, planetary scale change. We do not find indications for a variation of Neptune's brightness temperature at the 8% level. If Uranus is to be used as calibration source, and if accuracies better than 10% are required, the Uranus sub-earth point latitude needs to be taken into account.Comment: accepted for publication in A&

    Probing nuclear skins and halos with elastic electron scattering

    Full text link
    I investigate the elastic electron scattering off nuclei far from the stability line. The effects of the neutron and proton skins and halos on the differential cross sections are explored. Examples are given for the charge distribution in Sn isotopes and its relation to the neutron skin. The neutron halo in 11^{11}Li and the proton halo in 8^{8}B are also investigated. Particular interest is paid to the inverse scattering problem and its dependence on the experimental precision. These studies are of particular interest for the upcoming electron ion colliders at the GSI and RIKEN facilities.Comment: 27 pages, 9 figures, accepted for publication in J. Phys.

    Femto-Photography of Protons to Nuclei with Deeply Virtual Compton Scattering

    Get PDF
    Developments in deeply virtual Compton scattering allow the direct measurements of scattering amplitudes for exchange of a highly virtual photon with fine spatial resolution. Real-space images of the target can be obtained from this information. Spatial resolution is determined by the momentum transfer rather than the wavelength of the detected photon. Quantum photographs of the proton, nuclei, and other elementary particles with resolution on the scale of a fraction of a femtometer is feasible with existing experimental technology.Comment: To be published in Physical Review D. Replaces previous version with minor changes in presentatio

    Quantized Orbits and Resonant Transport

    Full text link
    A tight binding representation of the kicked Harper model is used to obtain an integrable semiclassical Hamiltonian consisting of degenerate "quantized" orbits. New orbits appear when renormalized Harper parameters cross integer multiples of π/2\pi/2. Commensurability relations between the orbit frequencies are shown to correlate with the emergence of accelerator modes in the classical phase space of the original kicked problem. The signature of this resonant transport is seen in both classical and quantum behavior. An important feature of our analysis is the emergence of a natural scaling relating classical and quantum couplings which is necessary for establishing correspondence.Comment: REVTEX document - 8 pages + 3 postscript figures. Submitted to Phys.Rev.Let

    Hofstadter butterfly and integer quantum Hall effect in three dimensions

    Full text link
    For a three-dimensional lattice in magnetic fields we have shown that the hopping along the third direction, which normally tends to smear out the Landau quantization gaps, can rather give rise to a fractal energy spectram akin to Hofstadter's butterfly when a criterion, found here by mapping the problem to two dimensions, is fulfilled by anisotropic (quasi-one-dimensional) systems. In 3D the angle of the magnetic field plays the role of the field intensity in 2D, so that the butterfly can occur in much smaller fields. The mapping also enables us to calculate the Hall conductivity, in terms of the topological invariant in the Kohmoto-Halperin-Wu's formula, where each of σxy,σzx\sigma_{xy}, \sigma_{zx} is found to be quantized.Comment: 4 pages, 6 figures, RevTeX, uses epsf.sty,multicol.st

    On the Green's Function of the almost-Mathieu Operator

    Full text link
    The square tight-binding model in a magnetic field leads to the almost-Mathieu operator which, for rational fields, reduces to a q×qq\times q matrix depending on the components μ\mu, ν\nu of the wave vector in the magnetic Brillouinzone. We calculate the corresponding Green's function without explicit knowledge of eigenvalues and eigenfunctions and obtain analytical expressions for the diagonal and the first off-diagonal elements; the results which are consistent with the zero magnetic field case can be used to calculate several quantities of physical interest (e. g. the density of states over the entire spectrum, impurity levels in a magnetic field).Comment: 9 pages, 3 figures corrected some minor errors and typo

    Innovation as a Nonlinear Process, the Scientometric Perspective, and the Specification of an "Innovation Opportunities Explorer"

    Get PDF
    The process of innovation follows non-linear patterns across the domains of science, technology, and the economy. Novel bibliometric mapping techniques can be used to investigate and represent distinctive, but complementary perspectives on the innovation process (e.g., "demand" and "supply") as well as the interactions among these perspectives. The perspectives can be represented as "continents" of data related to varying extents over time. For example, the different branches of Medical Subject Headings (MeSH) in the Medline database provide sources of such perspectives (e.g., "Diseases" versus "Drugs and Chemicals"). The multiple-perspective approach enables us to reconstruct facets of the dynamics of innovation, in terms of selection mechanisms shaping localizable trajectories and/or resulting in more globalized regimes. By expanding the data with patents and scholarly publications, we demonstrate the use of this multi-perspective approach in the case of RNA Interference (RNAi). The possibility to develop an "Innovation Opportunities Explorer" is specified.Comment: Technology Analysis and Strategic Management (forthcoming in 2013
    corecore