2,094 research outputs found
The ultimate tactics of self-referential systems
Mathematics is usually regarded as a kind of language. The essential behavior
of physical phenomena can be expressed by mathematical laws, providing
descriptions and predictions. In the present essay I argue that, although
mathematics can be seen, in a first approach, as a language, it goes beyond
this concept. I conjecture that mathematics presents two extreme features,
denoted here by {\sl irreducibility} and {\sl insaturation}, representing
delimiters for self-referentiality. These features are then related to physical
laws by realizing that nature is a self-referential system obeying bounds
similar to those respected by mathematics. Self-referential systems can only be
autonomous entities by a kind of metabolism that provides and sustains such an
autonomy. A rational mind, able of consciousness, is a manifestation of the
self-referentiality of the Universe. Hence mathematics is here proposed to go
beyond language by actually representing the most fundamental existence
condition for self-referentiality. This idea is synthesized in the form of a
principle, namely, that {\sl mathematics is the ultimate tactics of
self-referential systems to mimic themselves}. That is, well beyond an
effective language to express the physical world, mathematics uncovers a deep
manifestation of the autonomous nature of the Universe, wherein the human brain
is but an instance.Comment: 9 pages. This essay received the 4th. Prize in the 2015 FQXi essay
contest: "Trick or Truth: the Mysterious Connection Between Physics and
Mathematics
Design study for LANDSAT D attitude control system
A design and performance evaluation is presented for the LANDSAT D attitude control system (ACS). Control and configuration of the gimballed Ku-band antenna system for communication with the tracking and data relay satellite (TDRS). Control of the solar array drive considered part of the ACS is also addressed
Design study for LANDSAT-D attitude control system
The gimballed Ku-band antenna system for communication with TDRS was studied. By means of an error analysis it was demonstrated that the antenna cannot be open loop pointed to TDRS by an onboard programmer, but that an autotrack system was required. After some tradeoffs, a two-axis, azimuth-elevation type gimbal configuration was recommended for the antenna. It is shown that gimbal lock only occurs when LANDSAT-D is over water where a temporary loss of the communication link to TDRS is of no consequence. A preliminary gimbal control system design is also presented. A digital computer program was written that computes antenna gimbal angle profiles, assesses percent antenna beam interference with the solar array, and determines whether the spacecraft is over land or water, a lighted earth or a dark earth, and whether the spacecraft is in eclipse
Long-term observations of Uranus and Neptune at 90 GHz with the IRAM 30m telescope - (1985 -- 2005)
The planets Uranus and Neptune with small apparent diameters are primary
calibration standards. We investigate their variability at ~90 GHz using
archived data taken at the IRAM 30m telescope during the 20 years period 1985
to 2005. We calibrate the planetary observations against non-variable secondary
standards (NGC7027, NGC7538, W3OH, K3-50A) observed almost simultaneously.
Between 1985 and 2005, the viewing angle of Uranus changed from south-pole to
equatorial. We find that the disk brightness temperature declines by almost 10%
(~2sigma) over this time span indicating that the south-pole region is
significantly brighter than average. Our finding is consistent with recent
long-term radio observations at 8.6 GHz by Klein & Hofstadter (2006). Both data
sets do moreover show a rapid decrease of the Uranus brightness temperature
during the year 1993, indicating a temporal, planetary scale change. We do not
find indications for a variation of Neptune's brightness temperature at the 8%
level. If Uranus is to be used as calibration source, and if accuracies better
than 10% are required, the Uranus sub-earth point latitude needs to be taken
into account.Comment: accepted for publication in A&
Probing nuclear skins and halos with elastic electron scattering
I investigate the elastic electron scattering off nuclei far from the
stability line. The effects of the neutron and proton skins and halos on the
differential cross sections are explored. Examples are given for the charge
distribution in Sn isotopes and its relation to the neutron skin. The neutron
halo in Li and the proton halo in B are also investigated.
Particular interest is paid to the inverse scattering problem and its
dependence on the experimental precision. These studies are of particular
interest for the upcoming electron ion colliders at the GSI and RIKEN
facilities.Comment: 27 pages, 9 figures, accepted for publication in J. Phys.
Femto-Photography of Protons to Nuclei with Deeply Virtual Compton Scattering
Developments in deeply virtual Compton scattering allow the direct
measurements of scattering amplitudes for exchange of a highly virtual photon
with fine spatial resolution. Real-space images of the target can be obtained
from this information. Spatial resolution is determined by the momentum
transfer rather than the wavelength of the detected photon. Quantum photographs
of the proton, nuclei, and other elementary particles with resolution on the
scale of a fraction of a femtometer is feasible with existing experimental
technology.Comment: To be published in Physical Review D. Replaces previous version with
minor changes in presentatio
Quantized Orbits and Resonant Transport
A tight binding representation of the kicked Harper model is used to obtain
an integrable semiclassical Hamiltonian consisting of degenerate "quantized"
orbits. New orbits appear when renormalized Harper parameters cross integer
multiples of . Commensurability relations between the orbit frequencies
are shown to correlate with the emergence of accelerator modes in the classical
phase space of the original kicked problem. The signature of this resonant
transport is seen in both classical and quantum behavior. An important feature
of our analysis is the emergence of a natural scaling relating classical and
quantum couplings which is necessary for establishing correspondence.Comment: REVTEX document - 8 pages + 3 postscript figures. Submitted to
Phys.Rev.Let
Hofstadter butterfly and integer quantum Hall effect in three dimensions
For a three-dimensional lattice in magnetic fields we have shown that the
hopping along the third direction, which normally tends to smear out the Landau
quantization gaps, can rather give rise to a fractal energy spectram akin to
Hofstadter's butterfly when a criterion, found here by mapping the problem to
two dimensions, is fulfilled by anisotropic (quasi-one-dimensional) systems. In
3D the angle of the magnetic field plays the role of the field intensity in 2D,
so that the butterfly can occur in much smaller fields. The mapping also
enables us to calculate the Hall conductivity, in terms of the topological
invariant in the Kohmoto-Halperin-Wu's formula, where each of is found to be quantized.Comment: 4 pages, 6 figures, RevTeX, uses epsf.sty,multicol.st
On the Green's Function of the almost-Mathieu Operator
The square tight-binding model in a magnetic field leads to the
almost-Mathieu operator which, for rational fields, reduces to a
matrix depending on the components , of the wave vector in the
magnetic Brillouinzone. We calculate the corresponding Green's function without
explicit knowledge of eigenvalues and eigenfunctions and obtain analytical
expressions for the diagonal and the first off-diagonal elements; the results
which are consistent with the zero magnetic field case can be used to calculate
several quantities of physical interest (e. g. the density of states over the
entire spectrum, impurity levels in a magnetic field).Comment: 9 pages, 3 figures corrected some minor errors and typo
Innovation as a Nonlinear Process, the Scientometric Perspective, and the Specification of an "Innovation Opportunities Explorer"
The process of innovation follows non-linear patterns across the domains of
science, technology, and the economy. Novel bibliometric mapping techniques can
be used to investigate and represent distinctive, but complementary
perspectives on the innovation process (e.g., "demand" and "supply") as well as
the interactions among these perspectives. The perspectives can be represented
as "continents" of data related to varying extents over time. For example, the
different branches of Medical Subject Headings (MeSH) in the Medline database
provide sources of such perspectives (e.g., "Diseases" versus "Drugs and
Chemicals"). The multiple-perspective approach enables us to reconstruct facets
of the dynamics of innovation, in terms of selection mechanisms shaping
localizable trajectories and/or resulting in more globalized regimes. By
expanding the data with patents and scholarly publications, we demonstrate the
use of this multi-perspective approach in the case of RNA Interference (RNAi).
The possibility to develop an "Innovation Opportunities Explorer" is specified.Comment: Technology Analysis and Strategic Management (forthcoming in 2013
- …
