1,156 research outputs found

    Genetic analysis of tolerance to rice tungro bacilliform virus in rice (Oryza sativa L.) through agroinoculation

    Get PDF
    Balimau Putih [an Indonesian cultivar tolerant to rice tungro bacilliform virus (RTBV)] was crossed with IR64 (RTBV, susceptible variety) to produce the three filial generations F1, F2 and F3. Agroinoculation was used to introduce RTBV into the test plants. RTBV tolerance was based on the RTBV level in plants by analysis of coat protein using enzyme-linked immunosorbent assay. The level of RTBV in cv. Balimau Putih was significantly lower than that of IR64 and the susceptible control, Taichung Native 1. Mean RTBV levels of the F1, F2 and F3 populations were comparable with one another and with the average of the parents. Results indicate that there was no dominance and an additive gene action may control the expression of tolerance to RTBV. Tolerance based on the level of RTBV coat protein was highly heritable (0.67) as estimated using the mean values of F3 lines, suggesting that selection for tolerance to RTBV can be performed in the early selfing generations using the technique employed in this study. The RTBV level had a negative correlation with plant height, but positive relationship with disease index valu

    Multiscale Kinetic Monte-Carlo for Simulating Epitaxial Growth

    Full text link
    We present a fast Monte-Carlo algorithm for simulating epitaxial surface growth, based on the continuous-time Monte-Carlo algorithm of Bortz, Kalos and Lebowitz. When simulating realistic growth regimes, much computational time is consumed by the relatively fast dynamics of the adatoms. Continuum and continuum-discrete hybrid methods have been developed to approach this issue; however in many situations, the density of adatoms is too low to efficiently and accurately simulate as a continuum. To solve the problem of fast adatom dynamics, we allow adatoms to take larger steps, effectively reducing the number of transitions required. We achieve nearly a factor of ten speed up, for growth at moderate temperatures and large D/F.Comment: 7 pages, 6 figures; revised text, accepted by PR

    Improved crystal-growth and emission gain-narrowing of thiophene/phenylene co-oligomers

    Get PDF
    ArticleADVANCED MATERIALS. 15(3): 213-217(2003)journal articl

    Energetics and structure of the lower E region associated with sporadic E layer

    Get PDF
    The electron temperature (<I>T<sub>e</sub></I>), electron density (<I>N<sub>e</sub></I>), and two components of the electric field were measured from the height of 90 km to 150 km by one of the sounding rockets launched during the SEEK-2 campaign. The rocket went through sporadic E layer (<I>E<sub>s</sub></I>) at the height of 102 km–109 km during ascent and 99 km–108 km during decent, respectively. The energy density of thermal electrons calculated from <I>N<sub>e</sub></I> and <I>T<sub>e</sub></I> shows the broad maximum in the height range of 100–110 km, and it decreases towards the lower and higher altitudes, which implies that a heat source exists in the height region of 100 km–110 km. A 3-D picture of <I>E<sub>s</sub></I>, that was drawn by using <I>T<sub>e</sub></I>, <I>N<sub>e</sub></I>, and the electric field data, corresponded to the computer simulation; the main structure of <I>E<sub>s</sub></I> is projected to a higher altitude along the magnetic line of force, thus producing irregular structures of <I>T<sub>e</sub></I>, <I>N<sub>e</sub></I> and electric field in higher altitude

    A comparison of CMB- and HLA-based approaches to type I interoperability reference model problems for COTS-based distributed simulation

    Get PDF
    Commercial-off-the-shelf (COTS) simulation packages (CSPs) are software used by many simulation modellers to build and experiment with models of various systems in domains such as manufacturing, health, logistics and commerce. COTS distributed simulation deals with the interoperation of CSPs and their models. Such interoperability has been classified into six interoperability reference models. As part of an on-going standardisation effort, this paper introduces the COTS Simulation Package Emulator, a proposed benchmark that can be used to investigate Type I interoperability problems in COTS distributed simulation. To demonstrate its use, two approaches to this form of interoperability are discussed, an implementation of the CMB conservative algorithm, an example of a so-called “light” approach, and an implementation of the HLA TAR algorithm, an example of a so-called “heavy” approach. Results from experimentation over four federation topologies are presented and it is shown the HLA approach out performs the CMB approach in almost all cases. The paper concludes that the CSPE benchmark is a valid basis from which the most efficient approach to Type I interoperability problems for COTS distributed simulation can be discovered

    Orthodontic tooth movement enhancing bony apposition in alveolar bony defect: a case report

    Get PDF
    Introduction: Prevalence of complications from orthognathic surgery is relatively low but if it happens it is vital to manage the post complication bony defect appropriately. Case Presentation: This case report describes a 20-year-old gentleman who suffered from a complication from a bimaxillary orthognathic surgery. A bone grafting was carried out to repair the bony defect from the surgery but it was unsuccessful. A non-invasive technique employing the use of very light orthodontic force with a laceback stainless steel ligature is described and a successful space closure with an improvement in the periodontal condition and bone apposition has been shown. Conclusion: This technique can be considered if orthodontic tooth movement is needed across a deficient alveolar ridge. © 2009 Hibino and Wong; licensee BioMed Central Ltd.published_or_final_versio

    Facilitating the analysis of a UK national blood service supply chain using distributed simulation

    Get PDF
    In an attempt to investigate blood unit ordering policies, researchers have created a discrete-event model of the UK National Blood Service (NBS) supply chain in the Southampton area of the UK. The model has been created using Simul8, a commercial-off-the-shelf discrete-event simulation package (CSP). However, as more hospitals were added to the model, it was discovered that the length of time needed to perform a single simulation severely increased. It has been claimed that distributed simulation, a technique that uses the resources of many computers to execute a simulation model, can reduce simulation runtime. Further, an emerging standardized approach exists that supports distributed simulation with CSPs. These CSP Interoperability (CSPI) standards are compatible with the IEEE 1516 standard The High Level Architecture, the defacto interoperability standard for distributed simulation. To investigate if distributed simulation can reduce the execution time of NBS supply chain simulation, this paper presents experiences of creating a distributed version of the CSP Simul8 according to the CSPI/HLA standards. It shows that the distributed version of the simulation does indeed run faster when the model reaches a certain size. Further, we argue that understanding the relationship of model features is key to performance. This is illustrated by experimentation with two different protocols implementations (using Time Advance Request (TAR) and Next Event Request (NER)). Our contribution is therefore the demonstration that distributed simulation is a useful technique in the timely execution of supply chains of this type and that careful analysis of model features can further increase performance

    Detection of Multi-TeV Gamma Rays from Markarian 501 during an Unforeseen Flaring State in 1997 with the Tibet Air Shower Array

    Full text link
    In 1997, the BL Lac Object Mrk 501 entered a very active phase and was the brightest source in the sky at TeV energies, showing strong and frequent flaring. Using the data obtained with a high density air shower array that has been operating successfully at Yangbajing in Tibet since 1996, we searched for gamma-ray signals from this source during the period from February through August in 1997. Our observation detected multi-TeV γ\gamma-ray signals at the 3.7-Sigma level during this period. The most rapid increase of the excess counts was observed between April 7 and June 16 and the statistical significance of the excess counts in this period was 4.7-Sigma. Among several observations of flaring TeV gamma-rays from Mrk 501 in 1997, this is the only observation using a conventional air shower array. We present the energy spectrum of gamma-rays which will be worthy to compare with those obtained by imaging atmospheric Cerenkov telescopes.Comment: 9 pages, 7 figures, To appear in Ap

    Water-Gated Charge Doping of Graphene Induced by Mica Substrates

    Full text link
    We report on the existence of water-gated charge doping of graphene deposited on atomically flat mica substrates. Molecular films of water in units of ~0.4 nm-thick bilayers were found to be present in regions of the interface of graphene/mica hetero-stacks prepared by micromechanical exfoliation of kish graphite. The spectral variation of the G and 2D bands, as visualized by Raman mapping, shows that mica substrates induce strong p-type doping in graphene, with hole densities of (9±2)×1012cm(9 \pm 2) \times 1012 cm{-2}$. The ultrathin water films, however, effectively block interfacial charge transfer, rendering graphene significantly less hole-doped. Scanning Kelvin probe microscopy independently confirmed a water-gated modulation of the Fermi level by 0.35 eV, in agreement with the optically determined hole density. The manipulation of the electronic properties of graphene demonstrated in this study should serve as a useful tool in realizing future graphene applications.Comment: 15 pages, 4 figures; Nano Letters, accepted (2012
    corecore