8,568 research outputs found
Inflaton Particles in Reheating
In many theories of reheating starting from the classical spatially
homogeneous inflaton field, its accompanying inhomogeneous part (which arises
from primordial quantum fluctuations) is treated as a first order perturbation.
We examine some consequences of treating it non-perturbatively in a model where
a first order treatment is invalid. In particular we consider effects on the
long-wavelength curvature parameter relevant to the cosmic microwave background
fluctuations.Comment: 14 pages, 4 figures;code corrected,figures and some conclusions
change
Dynamics of internetwork chromospheric fibrils: Basic properties and MHD kink waves
Using the spectroscopic imaging capabilities of the Swedish Solar Telescope,
we aim to provide the first investigation on the nature and dynamics of
elongated absorption features (fibrils) observed in H in the
internetwork. We observe and identify a number of internetwork fibrils, which
form away from the kilogauss, network magnetic flux, and we provide a synoptic
view on their behaviour. The internetwork fibrils are found to support
wave-like behaviour, which we interpret as Magnetohydrodynamic (MHD) kink
waves. The properties of these waves, that is, amplitude, period, and
propagation speed, are measured from time-distance diagrams and we attempt to
exploit them via magneto-seismology in order to probe the variation of plasma
properties along the wave-guides. We found that the Internetwork (IN) fibrils
appear, disappear, and re-appear on timescales of tens of minutes, suggesting
that they are subject to repeated heating. No clear photospheric footpoints for
the fibrils are found in photospheric magnetograms or H wing images.
However, we suggest that they are magnetised features as the majority of them
show evidence of supporting propagating MHD kink waves, with a modal period of
~s. Additionally, one IN fibril is seen to support a flow directed along
its elongated axis, suggesting a guiding field. The wave motions are found to
propagate at speeds significantly greater than estimates for typical
chromospheric sound speeds. Through their interpretation as kink waves, the
measured speeds provide an estimate for local average Alfv\'en speeds.
Furthermore, the amplitudes of the waves are also found to vary as a function
of distance along the fibrils, which can be interpreted as evidence of
stratification of the plasma in the neighbourhood of the IN fibril.Comment: Accepted Astronomy & Astrophysic
Liquid Polymorphism and Density Anomaly in a Lattice Gas Model
We present a simple model for an associating liquid in which polymorphism and
density anomaly are connected. Our model combines a two dimensional lattice gas
with particles interacting through a soft core potential and orientational
degrees of freedom represented through thermal \char`\"{}ice
variables\char`\"{} . The competition between the directional attractive forces
and the soft core potential leads to a phase diagram in which two liquid phases
and a density anomaly are present. The coexistence line between the low density
liquid and the high density liquid has a positive slope contradicting the
surmise that the presence of a density anomaly implies that the high density
liquid is more entropic than the low density liquid
Liquid polymorphism and density anomaly in a three-dimensional associating lattice gas
We investigate the phase diagram of a three-dimensional associating gas
model. This model combines orientational ice-like interactions and
``van der Waals'' that might be repulsive, representing, in this case, a
penalty for distortion of hydrogen bonds. These interactions can be interpreted
as two competing distances making the connection between this model and
continuous isotropic soft-core potentials. We present Monte Carlo studies of
the model showing the presence of two liquid phase, two critical points
and A density anomaly
Superlattice Magnetophonon Resonances in Strongly Coupled InAs/GaSb Superlattices
We report an experimental study of miniband magnetoconduction in
semiconducting InAs/GaSb superlattices. For samples with miniband widths below
the longitudinal optical phonon energy we identify a new superlattice
magnetophonon resonance (SLMPR) caused by resonant scattering of electrons
across the mini-Brillouin zone. This new resonant feature arises directly from
the drift velocity characteristics of the superlattice dispersion and total
magnetic quantisation of the superlattice Landau level minibands.Comment: 9 pages, 8 figures, submitted to Phys. Rev.
- …