3,074 research outputs found

    Long range order in the classical kagome antiferromagnet: effective Hamiltonian approach

    Full text link
    Following Huse and Rutenberg [Phys. Rev. B 45, 7536 (1992)], I argue the classical Heisenberg antiferromagnet on the kagom\'e lattice has long-range spin order of the 3×3\sqrt{3}\times\sqrt{3} type (modulo gradual orientation fluctuations of the spins' plane). I start from the effective quartic Hamiltonian for the soft (out of plane) spin fluctuation modes, and treat as a perturbation those terms which depend on the discrete coplanar state. Soft mode correlations, which become the coefficients of a discrete effective Hamiltonian, are estimated analytically.Comment: 4pp, no figures. Converted to PRB format, extensive revisions/some reorderings to improve clarity; some cut

    Probing the wind-wind collision in Gamma Velorum with high-resolution Chandra X-ray spectroscopy: evidence for sudden radiative braking and non-equilibrium ionization

    Full text link
    We present a new analysis of an archived Chandra HETGS X-ray spectrum of the WR+O colliding wind binary Gamma Velorum. The spectrum is dominated by emission lines from astrophysically abundant elements: Ne, Mg, Si, S and Fe. From a combination of broad-band spectral analysis and an analysis of line flux ratios we infer a wide range of temperatures in the X-ray emitting plasma (~4-40 MK). As in the previously published analysis, we find the X-ray emission lines are essentially unshifted, with a mean FWHM of 1240 +/- 30 km/s. Calculations of line profiles based on hydrodynamical simulations of the wind-wind collision predict lines that are blueshifted by a few hundred km/s. The lack of any observed shift in the lines may be evidence of a large shock-cone opening half-angle (> 85 degrees), and we suggest this may be evidence of sudden radiative braking. From the R and G ratios measured from He-like forbidden-intercombination-resonance triplets we find evidence that the Mg XI emission originates from hotter gas closer to the O star than the Si XIII emission, which suggests that non-equilibrium ionization may be present.Comment: 22 pages, 14 figures. Accepted for publication in MNRA

    Properties of Resonating-Valence-Bond Spin Liquids and Critical Dimer Models

    Full text link
    We use Monte Carlo simulations to study properties of Anderson's resonating-valence-bond (RVB) spin-liquid state on the square lattice (i.e., the equal superposition of all pairing of spins into nearest-neighbor singlet pairs) and compare with the classical dimer model (CDM). The latter system also corresponds to the ground state of the Rokhsar-Kivelson quantum dimer model at its critical point. We find that although spin-spin correlations decay exponentially in the RVB, four-spin valence-bond-solid (VBS) correlations are critical, qualitatively like the well-known dimer-dimer correlations of the CDM, but decaying more slowly (as 1/ra1/r^a with a≈1.20a \approx 1.20, compared with a=2a=2 for the CDM). We also compute the distribution of monomer (defect) pair separations, which decay by a larger exponent in the RVB than in the CDM. We further study both models in their different winding number sectors and evaluate the relative weights of different sectors. Like the CDM, all the observed RVB behaviors can be understood in the framework of a mapping to a "height" model characterized by a gradient-squared stiffness constant KK. Four independent measurements consistently show a value KRVB≈1.6KCDMK_{RVB} \approx 1.6 K_{CDM}, with the same kinds of numerical evaluations of KCDMK_{CDM} give results in agreement with the rigorously known value KCDM=π/16K_{CDM}=\pi/16. The background of a nonzero winding number gradient W/LW/L introduces spatial anisotropies and an increase in the effective K, both of which can be understood as a consequence of anharmonic terms in the height-model free energy, which are of relevance to the recently proposed scenario of "Cantor deconfinement" in extended quantum dimer models. We also study ensembles in which fourth-neighbor (bipartite) bonds are allowed, at a density controlled by a tunable fugacity, resulting (as expected) in a smooth reduction of K.Comment: 26 pages, 21 figures. v3: final versio

    The "Coulomb phase" in frustrated systems

    Full text link
    The "Coulomb phase" is an emergent state for lattice models (particularly highly frustrated antiferromagnets) which have local constraints that can be mapped to a divergence-free "flux". The coarse-grained version of this flux or polarization behave analogously to electric or magnetic fields; in particular, defects at which the local constraint is violated behave as effective charges with Coulomb interactions. I survey the derivation of the characteristic power-law correlation functions and the pinch-points in reciprocal space plots of diffuse scattering, as well as applications to magnetic relaxation, quantum-mechanical generalizations, phase transitions to long-range-ordered states, and the effects of disorder.Comment: 30 pp, 5 figures (Sub. to Annual Reviews of Condensed Matter Physics

    Compact z=2z=2 Electrodynamics in 2+1 dimensions: Confinement with gapless modes

    Get PDF
    We consider 2+1 dimensional compact U(1) gauge theory at the Lifshitz point with dynamical critical exponent z=2z=2. As in the usual z=1z=1 theory, monopoles proliferate the vacuum for any value of the coupling, generating a mass scale. The theory of the dilute monopole gas is written in terms a non-relativistic Sine-Gordon model with two real fields. While monopoles remove some of the massless poles of the perturbative field strength propagator, a gapless mode representing the incomplete screening of monopoles remains, and is protected by a shift invariance of the original theory. Timelike Wilson loops still obey area laws, implying that minimal charges are confined, but the action of spacelike Wilson loops of linear size L goes instead as L3L^3.Comment: 4 pages, RevTeX. Some equations simplified. Version to appear in Physical Review Letter

    CPN−1CP^{N-1} Models at a Lifshitz Point

    Full text link
    We consider CPN−1CP^{N-1} models in d+1d+1 dimensions around Lifshitz fixed points with dynamical critical exponent zz, in the large-N expansion. It is shown that these models are asymptotically free and dynamically generate a mass for the CPN−1CP^{N-1} fields for all d=zd=z. We demonstrate that, for z=d=2z=d=2, the initially nondynamical gauge field acquires kinetic terms in a way similar to usual CPN−1CP^{N-1} models in 1+1 dimensions. Lorentz invariance emerges generically in the low-energy electrodynamics, with a nontrivial dielectric constant given by the inverse mass gap and a magnetic permeability which has a logarithmic dependence on scale. At a special multicritical point, the low-energy electrodynamics also has z=2z=2, and an essentially singular dependence of the effective action on B=ϵij∂iAjB=\epsilon_{ij}\partial_iA_j.Comment: LaTeX 13 pages; added a comment about constant field effective action. version published in Physical Review
    • …
    corecore