2,614 research outputs found
Ultra-low dissipation Josephson transistor
A superconductor-normal metal-superconductor (SNS) transistor based on
superconducting microcoolers is presented. The proposed 4-terminal device
consists of a long SNS Josephson junction whose N region is in addition
symmetrically connected to superconducting reservoirs through tunnel barriers
(I). Biasing the SINIS line allows to modify the quasiparticle temperature in
the weak link, thus controlling the Josephson current. We show that, in
suitable voltage and temperature regimes, large supercurrent enhancements can
be achieved with respect to equilibrium, due to electron ``cooling'' generated
by the control voltage. The extremely low power dissipation intrinsic to the
structure makes this device relevant for a number of electronic applications.Comment: 4 pages, 3 figures, to appear in Applied Physics Letter
Observations of auroral fading before breakup
The onset of auroral breakup was studied by using a variety of instruments with time resolution of some tens of second. Rapid sequences of all-sky photographs, and fast meridian scans by photometers, show that breakup is usually preceded by moderate brightening, followed by fading of the auroral brightness lasting one or two minutes, before the actual breakup itself. This optical activity is closely correlated with the development of auroral radar echoes. Data from a magnetometer network provide some indication of a correlated response by the local auroral and ionospheric currents. Riometer recordings show a slow decrease in ionspheric radio wave absorption over a period of about ten minutes prior to breakup, with the largest decrease essentially to quiet-time values in the region of auroral fading and subsequent breakup
Termination shock particle spectral features
Spectral features of energetic H ions accelerated at the termination shock may be evidence of two components. At low energies the energy spectrum is ~E^(–1.55), with break at ~0.4 MeV to E^(–2.2). A second component appears above ~1 MeV with a spectrum of E^(–1.27) with a break at ~3.2 MeV. Even though the intensities upstream are highly variable, the same spectral break energies are observed, suggesting that these are durable features of the source spectrum. The acceleration processes for the two components may differ, with the lower energy component serving as the injection source for diffusive shock acceleration of the higher energy component. Alternatively, the spectral features may result from the energy dependence of the diffusion tensor that affects the threshold for diffusive shock acceleration
Large periodic time variations of termination shock particles between ~0.5-20 mev and 6-14 mev electrons measured by the crs experiment on Voyager 2 as it crossed into the heliosheath in 2007: An example of freshly accelerated cosmic rays?
We have examined features in the structure of the heliosheath using the fine scale time variations of termination shock particles (TSP) between ~0.5 - 20 MeV and electrons between 2.5-14 MeV measured by the CRS instrument as the V2 spacecraft crossed the heliospheric termination shock in 2007. The very disturbed heliosheath at V2 is particularly noteworthy for strong periodic intensity variations of the TSP just after V2 crossed the termination shock (2007.66) reaching a maximum between 2007.75 and 2008.0. A series of 42/21 day periodicities was observed at V2 along with spectral changes of low energy TSP and the acceleration of 6-14 MeV electrons. Evidence is presented for the acceleration of TSP and electrons at the times of the 42/21 day periodicities just after V2 crossed the HTS. Spectra for TSP between 2-20 MeV and electrons between 2.5-14 MeV are derived for three time periods including the time of the HTS crossing. The energy spectra of TSP and electrons at these times of intensity peaks are very similar above ~3 MeV, with exponents of a power law spectrum between -3.0 and -3.6. The ratio of TSP intensities to electron intensities at the same energy is ~500. The electron intensity peaks and minima are generally out of phase with those of nuclei by ~1/2 of a 42 day cycle. These charge dependent intensity differences and the large periodic intensity changes could provide new clues as to a possible acceleration mechanism
Program evaluation primer: A review of three evaluations
Program evaluation—a “tool used to assess the implementation and outcomes of a program, to increase a program’s efficiency and impact over time, and to demonstrate accountability” (MacDonald et. al, 2001, p. 1)—is an essential process to program assessment and improvement. This paper overviews three published program evaluations and considers important aspects of program evaluation more broadly
A Study of the Relational Component in an Academic Advisor Professional Development Program
The purpose of the study was to investigate the significance of the relational component of academic advisor training and development in the learning opportunities of the professional development program and the advisors’ evaluation score at Florida International University
- …
