1,138 research outputs found

    Energy gaps and roton structure above the nu=1/2 Laughlin state of a rotating dilute Bose-Einstein condensate

    Full text link
    Exact diagonalization study of a rotating dilute Bose-Einstein condensate reveals that as the first vortex enters the system the degeneracy of the low-energy yrast spectrum is lifted and a large energy gap emerges. As more vortices enter with faster rotation, the energy gap decreases towards zero, but eventually the spectrum exhibits a rotonlike structure above the nu=1/2 Laughlin state without having a phonon branch despite the short-range nature of the interaction.Comment: 4 pages, 4 figures, 1 tabl

    The Yrast Spectra of Weakly Interacting Bose-Einstein Condensates

    Full text link
    The low energy quantal spectrum is considered as a function of the total angular momentum for a system of weakly interacting bosonic atoms held together by an external isotropic harmonic potential. It is found that besides the usual condensation into the lowest state of the oscillator, the system exhibits two additional kinds of condensate and associated thermodynamic phase transitions. These new phenomena are derived from the degrees of freedom of "partition space" which describes the multitude of different ways in which the angular momentum can be distributed among the atoms while remaining all the time in the lowest state of the oscillator

    A microscopic investigation of the transition form factor in the region of collective multipole excitations of stable and unstable nuclei

    Full text link
    We have used a self-consistent Skyrme-Hartree-Fock plus Continuum-RPA model to study the low-multipole response of stable and neutron/proton-rich Ni and Sn isotopes. We focus on the momentum-transfer dependence of the strength distribution, as it provides information on the structure of excited nuclear states and in particular on the variations of the transition form factor (TFF) with the energy. Our results show, among other things, that the TFF may show significant energy dependence in the region of the isoscalar giant monopole resonance and that the TFF corresponding to the threshold strength in the case of neutron-rich nuclei is different compared to the one corresponding to the respective giant resonance. Perspectives are given for more detailed future investigations.Comment: 13 pages, incl. 9 figures; to appear in J.Phys.G, http://www.iop.org/EJ/jphys

    Shape Deformations in Atomic Nuclei

    Full text link
    The ground states of some nuclei are described by densities and mean fields that are spherical, while others are deformed. The existence of non-spherical shape in nuclei represents a spontaneous symmetry breaking.Comment: 20 pages, 10 figures, submitted to scholarpedi

    Quadrupole Pairing Interaction and Signature Inversion

    Get PDF
    The signature inversion in the \pi h11/2 \otimes \nu h11/2 rotational bands of odd-odd Cs and La isotopes and the \pi h11/2 \otimes \nu i13/2 bands of odd-odd Tb, Ho and Tm nuclei is investigated using pairing and deformation self consistent mean field calculations. The model can rather satisfactorily account for the anomalous signature splitting, provided that spin assignments in som of the bands are revised. Our calculations show that signature inversioncan appear already at axially symmetric shapes. It is found that this is due to the contribution of the \lambda\mu=22 component of the quadrupole pairing interaction to the mean field potential.Comment: 17 pages, 14 figures, Nuclear Physics A in prin

    Change of shell structure and magnetic moments of odd-N deformed nuclei towards neutron drip line

    Full text link
    Examples of the change of neutron shell-structure in both weakly-bound and resonant neutron one-particle levels in nuclei towards the neutron drip line are exhibited. It is shown that the shell-structure change due to the weak binding may lead to the deformation of those nuclei with the neutron numbers N≈N \approx 8, 20, 28 and 40, which are known to be magic numbers in stable nuclei. Nuclei in the "island of inversion" are most easily and in a simple manner understood in terms of deformation. As an example of spectroscopic properties other than single-particle energies, magnetic moments of some weakly-bound possibly deformed odd-N nuclei with neutron numbers close to those traditional magic numbers are given, which are calculated using the wave function of the last odd particle in deformed Woods-Saxon potentials.Comment: 21 pages, 6 figure

    Nilsson diagrams for light neutron-rich nuclei with weakly-bound neutrons

    Full text link
    Using Woods-Saxon potentials and the eigenphase formalism for one-particle resonances, one-particle bound and resonant levels for neutrons as a function of quadrupole deformation are presented, which are supposed to be useful for the interpretation of spectroscopic properties of some light neutron-rich nuclei with weakly-bound neutrons. Compared with Nilsson diagrams in text books which are constructed using modified oscillator potentials, we point out a systematic change of the shell structure in connection with both weakly-bound and resonant one-particle levels related to small orbital angular momenta ℓ\ell. Then, it is seen that weakly-bound neutrons in nuclei such as 15−19^{15-19}C and 33−37^{33-37}Mg may prefer to being deformed as a result of Jahn-Teller effect, due to the near degeneracy of the 1d5/2_{5/2}-2s1/2_{1/2} levels and the 1f7/2_{7/2}-2p3/2_{3/2} levels in the spherical potential, respectively. Furthermore, the absence of some one-particle resonant levels compared with the Nilsson diagrams in text books is illustrated.Comment: 12 pages, 5 figure

    Rotations of nuclei with reflection asymmetry correlations

    Get PDF
    We propose a collective Hamiltonian which incorporates interactions capable to generate rotations in nuclei with simultaneous presence of octupole and quadrupole deformations. It is demonstrated that the model formalism could be applied to reproduce the staggering effects observed in nuclear octupole bands. On this basis we propose that the interactions involved would provide a relevant handle in the study of collective phenomena in nuclei and other quantum mechanical systems with reflection asymmetry correlations.Comment: LaTeX, 9 pages plus 3 figures given in separate .ps files. To appear in the proceedings of the International Conference on Nuclear Structure and Related Topics (Dubna, Russia, 6-10/6/2000), ed. R. Jolos, V. Voronov, et a

    Parametrizations of triaxial deformation and E2 transitions of the wobbling band

    Full text link
    By the very definition the triaxial deformation parameter Îł\gamma is related to the expectation values of the K=0 and K=2 components of the intrinsic quadrupole tensor operator. On the other hand, using the same symbol "Îł\gamma", various different parametrizations of triaxial deformation have been employed, which are suitable for various types of the mean-field potentials. It is pointed out that the values of various "Îł\gamma" are quite different for the same actual triaxial deformation, especially for the large deformation; for example, the difference can be almost a factor two for the case of the triaxial superdeformed bands recently observed in the Hf and Lu nuclei. In our previous work, we have studied the wobbling band in Lu nuclei by using the microscopic framework of the cranked Nilsson mean-field and the random phase approximation, where the most serious problem is that the calculated B(E2) value is about factor two smaller. It is shown that the origin of this underestimation can be mainly attributed to the small triaxial deformation; if is used the same triaxial deformation as in the analysis of the particle-rotor model, the calculated B(E2) increases and gives correct magnitude compared with the experimental data.Comment: 10 pages, 9 figure
    • 

    corecore