18 research outputs found

    Design, Fabrication, and Experimental Demonstration of Junction Surface Ion Traps

    Full text link
    We present the design, fabrication, and experimental implementation of surface ion traps with Y-shaped junctions. The traps are designed to minimize the pseudopotential variations in the junction region at the symmetric intersection of three linear segments. We experimentally demonstrate robust linear and junction shuttling with greater than one million round-trip shuttles without ion loss. By minimizing the direct line of sight between trapped ions and dielectric surfaces, negligible day-to-day and trap-to-trap variations are observed. In addition to high-fidelity single-ion shuttling, multiple-ion chains survive splitting, ion-position swapping, and recombining routines. The development of two-dimensional trapping structures is an important milestone for ion-trap quantum computing and quantum simulations.Comment: 9 pages, 6 figure

    Integration of fluorescence collection optics with a microfabricated surface electrode ion trap

    Full text link
    We have successfully demonstrated an integrated optical system for collecting the fluorescence from a trapped ion. The system, consisting of an array of transmissive, dielectric micro-optics and an optical fiber array, has been intimately incorporated into the ion-trapping chip without negatively impacting trapping performance. Epoxies, vacuum feedthrough, and optical component materials were carefully chosen so that they did not degrade the vacuum environment, and we have demonstrated light detection as well as ion trapping and shuttling behavior comparable to trapping chips without integrated optics, with no modification to the control voltages of the trapping chip.Comment: 14 pages, 12 figure

    Reduction of heating rate in a microfabricated ion trap by pulsed-laser cleaning

    Full text link
    Laser-cleaning of the electrodes in a planar micro-fabricated ion trap has been attempted using ns pulses from a tripled Nd:YAG laser at 355nm. The effect of the laser pulses at several energy density levels has been tested by measuring the heating rate of a single 40Ca+ trapped ion as a function of its secular frequency. A reduction of the electric-field noise spectral density by ~50% has been observed and a change in the frequency dependence also noticed. This is the first reported experiment where the "anomalous heating" phenomenon has been reduced by removing the source as opposed to reducing its thermal driving by cryogenic cooling. This technique may open the way to better control of the electrode surface quality in ion microtraps

    Characterization of PAN-1, a Carbapenem-Hydrolyzing Class B β-Lactamase From the Environmental Gram-Negative Pseudobacteriovorax antillogorgiicola.

    Get PDF
    The gene encoding the metallo-β-lactamase (MβL) PAN-1 was identified in the genome of the environmental Gram-negative species Pseudobacteriovorax antillogorgiicola. PAN-1 shares 57% amino-acid identity with the acquired MβL SPM-1, its closest relative. Kinetic parameters performed on purified PAN-1 showed it displayed a hydrolytic activity toward most β-lactams including carbapenems but spared cefepime and aztreonam. These results further highlight that environmental bacterial species may be reservoirs of MβL encoding genes

    Exploring the diversity and metabolic potential of actinomycetes from temperate marine sediments from Newfoundland, Canada

    No full text
    Marine sediments from Newfoundland, Canada were explored for biotechnologically promising Actinobacteria using culture-independent and culture-dependent approaches. Culture-independent pyrosequencing analyses uncovered significant actinobacterial diversity (H′—2.45 to 3.76), although the taxonomic diversity of biotechnologically important actinomycetes could not be fully elucidated due to limited sampling depth. Assessment of culturable actinomycete diversity resulted in the isolation of 360 actinomycetes representing 59 operational taxonomic units, the majority of which (94 %) were Streptomyces. The biotechnological potential of actinomycetes from NL sediments was assessed by bioactivity and metabolomics-based screening of 32 representative isolates. Bioactivity was exhibited by 41 % of isolates, while 11 % exhibited unique chemical signatures in metabolomics screening. Chemical analysis of two isolates resulted in the isolation of the cytotoxic metabolite 1-isopentadecanoyl-3β-d-glucopyranosyl-X-glycerol from Actinoalloteichus sp. 2L868 and sungsanpin from Streptomyces sp. 8LB7. These results demonstrate the potential for the discovery of novel bioactive metabolites from actinomycetes isolated from Atlantic Canadian marine sediments

    Discovery of Levesquamide B through Global Natural Product Social Molecular Networking

    No full text
    Levesquamide A is an isothiazolinone-containing anti-tubercular natural product isolated from Streptomyces sp. RKND-216. Through the use of Global Natural Product Social Molecular Networking (GNPS), additional members of the levesquamide family were identified (B-G). Levesquamide B is a glycosylated analogue, isolated and structurally elucidated via spectroscopical techniques along with the putative structures of levesquamide C and D. For masses relating to the additional three levesquamides (E-G), their complete structures remain ambiguous

    The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry

    No full text
    Senges CHR, Al-Dilaimi A, Marchbank DH, et al. The secreted metabolome of Streptomyces chartreusis and implications for bacterial chemistry. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA. 2018;115(10):2490-2495.Actinomycetes are known for producing diverse secondary metabolites. Combining genomics with untargeted data-dependent tandem MS and molecular networking, we characterized the secreted metabolome of the tunicamycin producer Streptomyces chartreusis NRRL 3882. The genome harbors 128 predicted biosynthetic gene clusters. We detected > 1,000 distinct secreted metabolites in culture supernatants, only 22 of which were identified based on standards and public spectral libraries. S. chartreusis adapts the secreted metabolome to cultivation conditions. A number of metabolites are produced iron dependently, among them 17 desferrioxamine siderophores aiding in iron acquisition. Eight previously unknown members of this long-known compound class are described. A single desferrioxamine synthesis gene cluster was detected in the genome, yet different sets of desferrioxamines are produced in different media. Additionally, a polyether ionophore, differentially produced by the calcimycin biosynthesis cluster, was discovered. This illustrates that metabolite output of a single biosynthetic machine can be exquisitely regulated not only with regard to product quantity but also with regard to product range. Compared with chemically defined medium, in complex medium, total metabolite abundancewas higher, structural diversity greater, and the average molecular weight almost doubled. Tunicamycins, for example, were only produced in complex medium. Extrapolating from this study, we anticipate that the larger part of bacterial chemistry, including chemical structures, ecological functions, and pharmacological potential, is yet to be uncovered
    corecore