41 research outputs found

    Circular Security Is Complete for KDM Security

    Get PDF
    Circular security is the most elementary form of key-dependent message (KDM) security, which allows us to securely encrypt only a copy of secret key bits. In this work, we show that circular security is complete for KDM security in the sense that an encryption scheme satisfying this security notion can be transformed into one satisfying KDM security with respect to all functions computable by a-priori bounded-size circuits (bounded-KDM security). This result holds in the presence of any number of keys and in any of secret-key/public-key and CPA/CCA settings. Such a completeness result was previously shown by Applebaum (EUROCRYPT 2011) for KDM security with respect to projection functions (projection-KDM security) that allows us to securely encrypt both a copy and a negation of secret key bits. Besides amplifying the strength of KDM security, our transformation in fact can start from an encryption scheme satisfying circular security against CPA attacks and results in one satisfying bounded-KDM security against CCA attacks. This result improves the recent result by Kitagawa and Matsuda (TCC 2019) showing a CPA-to-CCA transformation for KDM secure public-key encryption schemes

    Trapdoor Functions from the Computational Diffie-Hellman Assumption

    Get PDF
    Trapdoor functions (TDFs) are a fundamental primitive in cryptography. Yet, the current set of assumptions known to imply TDFs is surprisingly limited, when compared to public-key encryption. We present a new general approach for constructing TDFs. Specifically, we give a generic construction of TDFs from any Hash Encryption (Döttling and Garg [CRYPTO \u2717]) satisfying a novel property which we call recyclability. By showing how to adapt current Computational Diffie-Hellman (CDH) based constructions of hash encryption to yield recyclability, we obtain the first construction of TDFs with security proved under the CDH assumption. While TDFs from the Decisional Diffie-Hellman (DDH) assumption were previously known, the possibility of basing them on CDH had remained open for more than 30 years

    Minicrypt Primitives with Algebraic Structure and Applications

    Get PDF
    Algebraic structure lies at the heart of much of Cryptomania as we know it. An interesting question is the following: instead of building (Cryptomania) primitives from concrete assumptions, can we build them from simple Minicrypt primitives endowed with additional algebraic structure? In this work, we affirmatively answer this question by adding algebraic structure to the following Minicrypt primitives: ‱ One-Way Function (OWF) ‱ Weak Unpredictable Function (wUF) ‱ Weak Pseudorandom Function (wPRF) The algebraic structure that we consider is group homomorphism over the input/output spaces of these primitives. We also consider a “bounded” notion of homomorphism where the primitive only supports an a priori bounded number of homomorphic operations in order to capture lattice-based and other “noisy” assumptions. We show that these structured primitives can be used to construct many cryptographic protocols. In particular, we prove that: ‱ (Bounded) Homomorphic OWFs (HOWFs) imply collision-resistant hash functions, Schnorr-style signatures, and chameleon hash functions. ‱ (Bounded) Input-Homomorphic weak UFs (IHwUFs) imply CPA-secure PKE, non-interactive key exchange, trapdoor functions, blind batch encryption (which implies anonymous IBE, KDM-secure and leakage-resilient PKE), CCA2 deterministic PKE, and hinting PRGs (which in turn imply transformation of CPA to CCA security for ABE/1-sided PE). ‱ (Bounded) Input-Homomorphic weak PRFs (IHwPRFs) imply PIR, lossy trapdoor functions, OT and MPC (in the plain model). In addition, we show how to realize any CDH/DDH-based protocol with certain properties in a generic manner using IHwUFs/IHwPRFs, and how to instantiate such a protocol from many concrete assumptions. We also consider primitives with substantially richer structure, namely Ring IHwPRFs and L-composable IHwPRFs. In particular, we show the following: ‱ Ring IHwPRFs with certain properties imply FHE. ‱ 2-composable IHwPRFs imply (black-box) IBE, and LL-composable IHwPRFs imply non-interactive (L+1)(L + 1)-party key exchange. Our framework allows us to categorize many cryptographic protocols based on which structured Minicrypt primitive implies them. In addition, it potentially makes showing the existence of many cryptosystems from novel assumptions substantially easier in the future

    ICAR: endoscopic skull‐base surgery

    Get PDF
    n/

    Intelligent Models Performance Improvement Based on Wavelet Algorithm and Logarithmic Transformations in Suspended Sediment Estimation

    No full text
    Introduction One reason for the complexity of hydrological phenomena prediction, especially time series is existence of features such as trend, noise and high-frequency oscillations. These complex features, especially noise, can be detected or removed by preprocessing. Appropriate preprocessing causes estimation of these phenomena become easier. Preprocessing in the data driven models such as artificial neural network, gene expression programming, support vector machine, is more effective because the quality of data in these models is important. Present study, by considering diagnosing and data transformation as two different preprocessing, tries to improve the results of intelligent models. In this study two different intelligent models, Artificial Neural Network and Gene Expression Programming, are applied to estimation of daily suspended sediment load. Wavelet transforms and logarithmic transformation is used for diagnosing and data transformation, respectively. Finally, the impacts of preprocessing on the results of intelligent models are evaluated. Materials and Methods In this study, Gene Expression Programming and Artificial Neural Network are used as intelligent models for suspended sediment load estimation, then the impacts of diagnosing and logarithmic transformations approaches as data preprocessor are evaluated and compared to the result improvement. Two different logarithmic transforms are considered in this research, LN and LOG. Wavelet transformation is used to time series denoising. In order to denoising by wavelet transforms, first, time series can be decomposed at one level (Approximation part and detail part) and second, high-frequency part (detail) will be removed as noise. According to the ability of gene expression programming and artificial neural network to analysis nonlinear systems; daily values of suspended sediment load of the Skunk River in USA, during a 5-year period, are investigated and then estimated.4 years of data are applied to models training and one year is estimated by each model. Accuracy of models is evaluated by three indexes. These three indexes are mean absolute error (MAE), root mean squared error (RMSE) and Nash-Sutcliffecoefficient (NS). Results and Discussion In order to suspended sediment load estimation by intelligent models, different input combination for model training evaluated. Then the best combination of input for each intelligent model is determined and preprocessing is done only for the best combination. Two logarithmic transforms, LN and LOG, considered to data transformation. Daubechies wavelet family is used as wavelet transforms. Results indicate that diagnosing causes Nash Sutcliffe criteria in ANN and GEPincreases 0.15 and 0.14, respectively. Furthermore, RMSE value has been reduced from 199.24 to 141.17 (mg/lit) in ANN and from 234.84 to 193.89 (mg/lit) in GEP. The impact of the logarithmic transformation approach on the ANN result improvement is similar to diagnosing approach. While the logarithmic transformation approach has an adverse impact on GEP. Nash Sutcliffe criteria, after Ln and Log transformations as preprocessing in GEP model, has been reduced from 0.57 to 0.31 and 0.21, respectively, and RMSE value increases from 234.84 to 298.41 (mg/lit) and 318.72 (mg/lit) respectively. Results show that data denoising by wavelet transform is effective for improvement of two intelligent model accuracy, while data transformation by logarithmic transformation causes improvement only in artificial neural network. Results of the ANN model reveal that data transformation by LN transfer is better than LOG transfer, however both transfer function cause improvement in ANN results. Also denoising by different wavelet transforms (Daubechies family) indicates that in ANN models the wavelet function Db2 is more effective and causes more improvement while on GEP models the wavelet function Db1 (Harr) is better. Conclusions: In the present study, two different intelligent models, Gene Expression Programming and Artificial Neural Network, have been considered to estimation of daily suspended sediment load in the Skunk river in the USA. Also, two different procedures, denoising and data transformation have been used as preprocessing to improve results of intelligent models. Wavelet transforms are used for diagnosing and logarithmic transformations are used for data transformation. The results of this research indicate that data denoising by wavelet transforms is effective for improvement of two intelligent model accuracy, while data transformation by logarithmic transformation causes improvement only in artificial neural network. Data transformation by logarithmic transforms not only does not improve results of GEP model, but also reduces GEP accuracy

    A study into the effect of loading conditions on the resistance of asymmetric high-speed catamaran based on experimental tests

    No full text
    Preparing high speed and sea keeping simultaneously are outstanding features of Catamaran boats (as one of multi-hull boats). In this paper, influence of loading conditions on drag through 6 series of experimental tests has been investigated. Experiments have been executed in a towing tank for model in scale 1 ratio to 11.43. Ultimately, results have been presented to full scale boat by Froude number and ITTC model. Loading conditions consist primarily of both weight of boat and longitudinal central gravity (LCG). Hence, adopted Catamaran has been examined in various loading conditions (light, full and over load) and two LCGs allocated to each weight in order to clarify effect of ones on drag. According to results whatever central gravity comes close to transom (backward position of LCGs), drag diminishes in high speed but increase in boat weight leads to decrease in its impact. As a consequence, the most descent of drag about 9.6% occurred in light load and maximum speed. Keywords: Catamaran, Load conditions, Towing tank, Dra

    Drahtlose periphere Nervenstimulation bei refraktÀrer Trigeminusneuralgie

    No full text
    corecore