5,963 research outputs found

    The Urbanization Deflator of the GNP, 1919-1984: Reply

    Get PDF

    Cosmology from String Theory

    Full text link
    We explore the cosmological content of Salam-Sezgin six dimensional supergravity, and find a solution to the field equations in qualitative agreement with observation of distant supernovae, primordial nucleosynthesis abundances, and recent measurements of the cosmic microwave background. The carrier of the acceleration in the present de Sitter epoch is a quintessence field slowly rolling down its exponential potential. Intrinsic to this model is a second modulus which is automatically stabilized and acts as a source of cold dark matter with a mass proportional to an exponential function of the quintessence field (hence realizing VAMP models within a String context). However, any attempt to saturate the present cold dark matter component in this manner leads to unacceptable deviations from cosmological data -- a numerical study reveals that this source can account for up to about 7% of the total cold dark matter budget. We also show that (1) the model will support a de Sitter energy in agreement with observation at the expense of a miniscule breaking of supersymmetry in the compact space; (2) variations in the fine structure constant are controlled by the stabilized modulus and are negligible; (3) ``fifth''forces are carried by the stabilized modulus and are short range; (4) the long time behavior of the model in four dimensions is that of a Robertson-Walker universe with a constant expansion rate (w = -1/3). Finally, we present a String theory background by lifting our six dimensional cosmological solution to ten dimensions.Comment: Version to be published in Physical Review

    Minimal left-right symmetric intersecting D-brane model

    Full text link
    We investigate left-right symmetric extensions of the standard model based on open strings ending on D-branes, with gauge bosons due to strings attached to stacks of D-branes and chiral matter due to strings stretching between intersecting D-branes. The left-handed and right-handed fermions transform as doublets under Sp(1)_L and Sp(1)_R, and so their masses must be generated by the introduction of Higgs fields in a bi-fundamental (2,2) representation under the two Sp(1) gauge groups. For such D-brane configurations the left-right symmetry must be broken by Higgs fields in the doublet representation of Sp(1)_R and therefore Majorana mass terms are suppressed by some higher physics scale. The left-handed and right-handed neutrinos pair up to form Dirac fermions which control the decay widths of the right-handed W' boson to yield comparable branching fractions into dilepton and dijets channels. Using the most recent searches at LHC13 Run II with 2016 data we constrain the (g_R, m_{W'}) parameter space. Our analysis indicates that independent of the coupling strength g_R, gauge bosons with masses m_{W'} \agt 3.5~{\rm TeV} are not ruled out. As the LHC is just beginning to probe the TeV-scale, significant room for W' discovery remains.Comment: To be published in PR

    Update on 750 GeV diphotons from closed string states

    Get PDF
    Motivated by the recent update on LHC searches for narrow and broad resonances decaying into diphotons we reconsider the possibility that the observed peak in the invariant mass spectrum at M_{\gamma \gamma} = 750 GeV originates from a closed string (possibly axionic) excitation \varphi (associated with low mass scale string theory) that has a coupling with gauge kinetic terms. We reevaluate the production of \varphi by photon fusion to accommodate recent developments on additional contributions to relativistic light-light scattering. We also study the production of \varphi via gluon fusion. We show that for both a narrow and a broad resonance these two initial topologies can accommodate the excess of events, spanning a wide range of string mass scales 7 \alt M_s/TeV \alt 30 that are consistent with the experimental lower bound: M_s > 7 TeV, at 95% CL. We demonstrate that for the two production processes the LHC13 data is compatible with the lack of a diphoton excess in LHC8 data within \sim 1\sigma. We also show that if the resonance production is dominated by gluon fusion the null results on dijet searches at LHC8 further constrain the coupling strengths of \varphi, but without altering the range of possible string mass scales.Comment: 11 pages revtex. arXiv admin note: text overlap with arXiv:1512.0850

    Stringy origin of diboson and dijet excesses at the LHC

    Get PDF
    Very recently, the ATLAS and CMS collaborations reported diboson and dijet excesses above standard model expectations in the invariant mass region of 1.8 -2.0 TeV. Interpreting the diboson excess of events in a model independent fashion suggests that the vector boson pair production searches are best described by WZ or ZZ topologies, because states decaying into W^+W^- pairs are strongly constrained by semileptonic searches. Under the assumption of a low string scale, we show that both the diboson and dijet excesses can be steered by an anomalous U(1) field with very small coupling to leptons. The Drell-Yan bounds are then readily avoided because of the leptophobic nature of the massive Z' gauge boson. The non-negligible decay into ZZ required to accommodate the data is a characteristic footprint of intersecting D-brane models, wherein the Landau-Yang theorem can be evaded by anomaly-induced operators involving a longitudinal Z. The model presented herein can be viewed purely field-theoretically, although it is particularly well motivated from string theory. Should the excesses become statistically significant at the LHC13, the associated Z\gamma{} topology would become a signature consistent only with a stringy origin.Comment: References added. To be published in PL
    corecore