24 research outputs found
A review of wearable motion tracking systems used in rehabilitation following hip and knee replacement
Clinical teams are under increasing pressure to facilitate early hospital discharge for total hip replacement and total knee replacement patients following surgery. A wide variety of wearable devices are being marketed to assist with rehabilitation following surgery. A review of wearable devices was undertaken to assess the evidence supporting their efficacy in assisting rehabilitation following total hip replacement and total knee replacement. A search was conducted using the electronic databases including Medline, CINAHL, Cochrane, PsycARTICLES, and PubMed of studies from January 2000 to October 2017. Five studies met the eligibility criteria, and all used an accelerometer and a gyroscope for their technology. A review of the studies found very little evidence to support the efficacy of the technology, although they show that the use of the technology is feasible. Future work should establish which wearable technology is most valuable to patients, which ones improve patient outcomes, and the most economical model for deploying the technolog
Exploiting Traffic Correlation Towards Energy Saving in Data Centers
Many proposed data center architectures are constructed with a huge number of network devices in order to support the increasing cloud based services. These devices are used to achieve the highest performance in case of full utilization of the network. However, the peak capacity of the network is rarely reached. As a result, many devices are set into idle state which increases the network energy consumption and lead to a non-proportionality between the consumed energy and the network load. In this paper, we present a new approach that reduces the data center energy consumption with a reduced trade off on network performance. By exploiting the correlation in time of internode communication and some topological features, the proposed approach uses the outdated traffic matrix to control the set of active communication links and ports in the network (switches ports and nodes ports). The ports activation management process is done using a proposed algorithm that guarantees network connectivity. Extensive simulations have been conducted to validate the performance of the proposed scheme in terms of average path length and energy consumption. ? 2018 IEEE.This publication was made possible by NPRP grant 6-718-2-298 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors.Scopu
Efficient techniques for energy saving in data center networks
Data centers are constructed with a huge number of network devices to support the expanding cloud based services. These devices are used to achieve the highest performance in case of full utilization of the network. However, the peak capacity of the network is rarely reached. Consequently, many devices are set into idle state and cause a huge energy waste leading to a non-proportionality between the network load and the energy consumed. In this paper, we propose a new approach to improve the efficiency of data centers in terms of energy consumption. Our approach exploits the correlation in time of the inter-node communication traffic and some topological features to maximize energy saving with only a minor increase in the average path length. Our approach dynamically controls the number of active communication links by turning off and on ports in the network (switches ports and nodes ports). Simulations results confirmed the energy saving gain procured by the proposed approach with a low impact on the average path length.This publication was made possible by NPRP grant 6-718-2-298 from the Qatar National Research Fund (a member of Qatar Foundation). The statements made herein are solely the responsibility of the authors