117 research outputs found

    Characterization of Iridium Coated Rhenium Used in High-Temperature, Radiation-Cooled Rocket Thrusters

    Get PDF
    Materials used for radiation-cooled rocket thrusters must be capable of surviving under extreme conditions of high-temperatures and oxidizing environments. While combustion efficiency is optimized at high temperatures, many refractory metals are unsuitable for thruster applications due to rapid material loss from the formation of volatile oxides. This process occurs during thruster operation by reaction of the combustion products with the material surface. Aerojet Technical Systems has developed a thruster cone chamber constructed of Re coated with Ir on the inside surface where exposure to the rocket exhaust occurs. Re maintains its structural integrity at high temperature and the Ir coating is applied as an oxidation barrier. Ir also forms volatile oxide species (IrO2 and IrO3) but at a considerably slower rate than Re. In order to understand the performance limits of Ir-coated Re thrusters, we are investigating the interdiffusion and oxidation kinetics of Ir/Re. The formation of iridium and rhenium oxides has been monitored in situ by Raman spectroscopy during high temperature exposure to oxygen. For pure Ir, the growth of oxide films as thin as approximately 200 A could be easily detected and the formation of IrO2 was observed at temperatures as low as 600 C. Ir/Re diffusion test specimens were prepared by magnetron sputtering of Ir on Re substrates. Concentration profiles were determined by sputter Auger depth profiles of the heat treated specimens. Significant interdiffusion was observed at temperatures as low as 1000 C. Measurements of the activation energy suggest that below 1350 C, the dominant diffusion path is along defects, most likely grain boundaries, rather than bulk diffusion through the grains. The phases that form during interdiffusion have been examined by x ray diffraction. Analysis of heated test specimens indicates that the Ir-Re reaction produces a solid solution phase of Ir dissolved in the HCP structure of Re

    A general lithography-free method of microscale/nanoscale fabrication and patterning on Si and Ge surfaces

    Get PDF
    Here, we introduce and give an overview of a general lithography-free method to fabricate silicide and germanide micro-/nanostructures on Si and Ge surfaces through metal-vapor-initiated endoepitaxial growth. Excellent controls on shape and orientation are achieved by adjusting the substrate orientation and growth parameters. Furthermore, micro-/nanoscale pits with controlled morphologies can also be successfully fabricated on Si and Ge surfaces by taking advantage of the sublimation of silicides/germanides. The aim of this brief report is to illustrate the concept of lithography-free synthesis and patterning on surfaces of elemental semiconductors, and the differences and the challenges associated with the Si and the Ge surfaces will be discussed. Our results suggest that this low-cost bottom-up approach is promising for applications in functional nanodevices

    The response of Plantago major ssp pleiosperma to elevated CO2 is modulated by the formation of secondary shoots

    Get PDF
    The effect of elevated CO2 on the relative growth rate (RGR) of Plantago major ssp. pleiosperma was studied during the vegetative stage, in relation to plant development, by growing plants at 350 mu l l(-1) or at 700 mu l l(-1) CO2 in non-limiting nutrient solution with nitrate. To minimize interference by the accumulation of non-structural carbohydrates in the interpretation of results, RGR was expressed on a f. wt basis (RGR(FW)), as were all plant weight ratios. Stimulation of the RGR(FW) Of the whole plant by elevated CO2 was transient, and did not last longer than 8 d. At the same time a transient increase in root weight ratio (RWR) was observed. In order to investigate whether the transient effect of elevated CO2 on RGR(FW) was size-dependent, the data were plotted versus total f. wt (log(e) transformed). The transient period of stimulation of RGR(FW) and of RWR by elevated CO2 was still found, but in both CO2 treatments RGR(FW) decreased after a certain plant size had been reached. This size coincided with the stage at which secondary shoots started to develop, and was reached earlier in plants grown at elevated CO2. The RGR of these secondary shoots (RGR(see)) was Still increased when the period of whole plant stimulation of RGR(FW) had ended, indicating that the development of these new sinks took priority over a continuation of the stimulation of RWR. It is hypothesized that in this Plantago subspecies the response of the RGR(FW) of the whole plants to elevated CO2 is modulated by the formation of secondary shoots. Apparently, partitioning of the extra soluble carbohydrates at elevated CO2 to this tissue takes precedence over partitioning to the roots. resulting in a cessation of stimulation of plant RGR(FW) by elevated CO2.info:eu-repo/semantics/publishedVersio

    First lithographic results from the extreme ultraviolet Engineering Test Stand

    Get PDF
    The extreme ultraviolet ͑EUV͒ Engineering Test Stand ͑ETS͒ is a step-and-scan lithography tool that operates at a wavelength of 13.4 nm. It has been developed to demonstrate full-field EUV imaging and acquire system learning for equipment manufacturers to develop commercial tools. The initial integration of the tool is being carried out using a developmental set of projection optics, while a second, higher-quality, projection optics is being assembled and characterized in a parallel effort. We present here the first lithographic results from the ETS, which include both static and scanned resist images of 100 nm dense and isolated features throughout the ring field of the projection optics. Accurate lithographic models have been developed and compared with the experimental results

    Solid Metal Embrittlement of Ti-6AI-6V-2Sn by Cadmium, Silver and Gold

    No full text
    Solid metal embrittlement of Ti-6A1-6V-2Sn has been observed with Cd, Ag, and Au. A threshold temperature of 477 to 505/sup 0/K exists for Ag and Au, below which no embrittlement was observed. Embrittlement by Cd at 421/sup 0/K was confirmed. No embrittlement due to Cu or Ni was observed at temperatures as high as 560/sup 0/K. Scanning Auger analysis of Ag and Cd embrittled samples indicated that (1) the fracture path is intergranular, (2) surface diffusion is the limiting transport mechanism, and (3) surface diffusion of Cd and Ag is over the titanium oxide. The fracture process is discussed in relation to liquid metal embrittlement
    corecore