2,518 research outputs found

    Results to be expected from light scattering dust analyzer during a rendezvous mission

    Get PDF
    The light scattering principle for particle detection is customary for the measurement of aerosols. Light scattering techniques can be applied to mixtures of particles (nephelometers) and to single particles as well. Measuring particle mixtures simplify detection because of the higher intensity level, however, information concerning the individual particle is lost. To provide well defined conditions over the whole rendezvous period, i.e., constant illumination beam and unchangeable scattering angle, the use of an artificial light source (instead of the sun) and a scattering volume located within the S/C is desirable. Considering this and the relatively low particle densities to be expected, the measurement of particle mixtures must be excluded

    Cooling dynamics of a dilute gas of inelastic rods: a many particle simulation

    Full text link
    We present results of simulations for a dilute gas of inelastically colliding particles. Collisions are modelled as a stochastic process, which on average decreases the translational energy (cooling), but allows for fluctuations in the transfer of energy to internal vibrations. We show that these fluctuations are strong enough to suppress inelastic collapse. This allows us to study large systems for long times in the truely inelastic regime. During the cooling stage we observe complex cluster dynamics, as large clusters of particles form, collide and merge or dissolve. Typical clusters are found to survive long enough to establish local equilibrium within a cluster, but not among different clusters. We extend the model to include net dissipation of energy by damping of the internal vibrations. Inelatic collapse is avoided also in this case but in contrast to the conservative system the translational energy decays according to the mean field scaling law, E(t)\propto t^{-2}, for asymptotically long times.Comment: 10 pages, 12 figures, Latex; extended discussion, accepted for publication in Phys. Rev.

    Leveraging parameter dependencies in high-field asymmetric waveform ion-mobility spectrometry and size exclusion chromatography for proteome-wide cross-linking mass spectrometry

    Get PDF
    [Image: see text] Ion-mobility spectrometry shows great promise to tackle analytically challenging research questions by adding another separation dimension to liquid chromatography–mass spectrometry. The understanding of how analyte properties influence ion mobility has increased through recent studies, but no clear rationale for the design of customized experimental settings has emerged. Here, we leverage machine learning to deepen our understanding of field asymmetric waveform ion-mobility spectrometry for the analysis of cross-linked peptides. Knowing that predominantly m/z and then the size and charge state of an analyte influence the separation, we found ideal compensation voltages correlating with the size exclusion chromatography fraction number. The effect of this relationship on the analytical depth can be substantial as exploiting it allowed us to almost double unique residue pair detections in a proteome-wide cross-linking experiment. Other applications involving liquid- and gas-phase separation may also benefit from considering such parameter dependencies

    Collision of One-Dimensional Nonlinear Chains

    Full text link
    We investigate one-dimensional collisions of unharmonic chains and a rigid wall. We find that the coefficient of restitution (COR) is strongly dependent on the velocity of colliding chains and has a minimum value at a certain velocity. The relationship between COR and collision velocity is derived for low-velocity collisions using perturbation methods. We found that the velocity dependence is characterized by the exponent of the lowest unharmonic term of interparticle potential energy

    A toy model of fractal glioma development under RF electric field treatment

    Full text link
    A toy model for glioma treatment by a radio frequency electric field is suggested. This low-intensity, intermediate-frequency alternating electric field is known as the tumor-treating-field (TTF). In the framework of this model the efficiency of this TTF is estimated, and the interplay between the TTF and the migration-proliferation dichotomy of cancer cells is considered. The model is based on a modification of a comb model for cancer cells, where the migration-proliferation dichotomy becomes naturally apparent. Considering glioma cancer as a fractal dielectric composite of cancer cells and normal tissue cells, a new effective mechanism of glioma treatment is suggested in the form of a giant enhancement of the TTF. This leads to the irreversible electroporation that may be an effective non-invasive method of treating brain cancer.Comment: Submitted for publication in European Physical Journal

    Diffraction in low-energy electron scattering from DNA: bridging gas phase and solid state theory

    Full text link
    Using high-quality gas phase electron scattering calculations and multiple scattering theory, we attempt to gain insights on the radiation damage to DNA induced by secondary low-energy electrons in the condensed phase, and to bridge the existing gap with the gas phase theory and experiments. The origin of different resonant features (arising from single molecules or diffraction) is discussed and the calculations are compared to existing experiments in thin films.Comment: 40 pages preprint, 12 figures, submitted to J. Chem. Phy

    Fluctuation-Facilitated Charge Migration along DNA

    Full text link
    We propose a model Hamiltonian for charge transfer along the DNA double helix with temperature driven fluctuations in the base pair positions acting as the rate limiting factor for charge transfer between neighboring base pairs. We compare the predictions of the model with the recent work of J.K. Barton and A.H. Zewail (Proc.Natl.Acad.Sci.USA, {\bf 96}, 6014 (1999)) on the unusual two-stage charge transfer of DNA.Comment: 4 pages, 2 figure
    corecore