880 research outputs found

    Presentations: from Kac-Moody groups to profinite and back

    Get PDF
    We go back and forth between, on the one hand, presentations of arithmetic and Kac-Moody groups and, on the other hand, presentations of profinite groups, deducing along the way new results on both

    Generators of simple Lie algebras in arbitrary characteristics

    Full text link
    In this paper we study the minimal number of generators for simple Lie algebras in characteristic 0 or p > 3. We show that any such algebra can be generated by 2 elements. We also examine the 'one and a half generation' property, i.e. when every non-zero element can be completed to a generating pair. We show that classical simple algebras have this property, and that the only simple Cartan type algebras of type W which have this property are the Zassenhaus algebras.Comment: 26 pages, final version, to appear in Math. Z. Main improvements and corrections in Section 4.

    Bounding the dimensions of rational cohomology groups

    Full text link
    Let kk be an algebraically closed field of characteristic p>0p > 0, and let GG be a simple simply-connected algebraic group over kk that is defined and split over the prime field Fp\mathbb{F}_p. In this paper we investigate situations where the dimension of a rational cohomology group for GG can be bounded by a constant times the dimension of the coefficient module. We then demonstrate how our results can be applied to obtain effective bounds on the first cohomology of the symmetric group. We also show how, for finite Chevalley groups, our methods permit significant improvements over previous estimates for the dimensions of second cohomology groups.Comment: 13 page

    Alternating groups and moduli space lifting Invariants

    Full text link
    Main Theorem: Spaces of r-branch point 3-cycle covers, degree n or Galois of degree n!/2 have one (resp. two) component(s) if r=n-1 (resp. r\ge n). Improves Fried-Serre on deciding when sphere covers with odd-order branching lift to unramified Spin covers. We produce Hurwitz-Torelli automorphic functions on Hurwitz spaces, and draw Inverse Galois conclusions. Example: Absolute spaces of 3-cycle covers with +1 (resp. -1) lift invariant carry canonical even (resp. odd) theta functions when r is even (resp. odd). For inner spaces the result is independent of r. Another use appears in, http://www.math.uci.edu/~mfried/paplist-mt/twoorbit.html, "Connectedness of families of sphere covers of A_n-Type." This shows the M(odular) T(ower)s for the prime p=2 lying over Hurwitz spaces first studied by, http://www.math.uci.edu/~mfried/othlist-cov/hurwitzLiu-Oss.pdf, Liu and Osserman have 2-cusps. That is sufficient to establish the Main Conjecture: (*) High tower levels are general-type varieties and have no rational points.For infinitely many of those MTs, the tree of cusps contains a subtree -- a spire -- isomorphic to the tree of cusps on a modular curve tower. This makes plausible a version of Serre's O(pen) I(mage) T(heorem) on such MTs. Establishing these modular curve-like properties opens, to MTs, modular curve-like thinking where modular curves have never gone before. A fuller html description of this paper is at http://www.math.uci.edu/~mfried/paplist-cov/hf-can0611591.html .Comment: To appear in the Israel Journal as of 1/5/09; v4 is corrected from proof sheets, but does include some proof simplification in \S

    On the trace of the antipode and higher indicators

    Get PDF
    We introduce two kinds of gauge invariants for any finite-dimensional Hopf algebra H. When H is semisimple over C, these invariants are respectively, the trace of the map induced by the antipode on the endomorphism ring of a self-dual simple module, and the higher Frobenius-Schur indicators of the regular representation. We further study the values of these higher indicators in the context of complex semisimple quasi-Hopf algebras H. We prove that these indicators are non-negative provided the module category over H is modular, and that for a prime p, the p-th indicator is equal to 1 if, and only if, p is a factor of dim H. As an application, we show the existence of a non-trivial self-dual simple H-module with bounded dimension which is determined by the value of the second indicator.Comment: additional references, fixed some typos, minor additions including a questions and some remark

    On intermediate subfactors of Goodman-de la Harpe-Jones subfactors

    Full text link
    In this paper we present a conjecture on intermediate subfactors which is a generalization of Wall's conjecture from the theory of finite groups. Motivated by this conjecture, we determine all intermediate subfactors of Goodman-Harpe-Jones subfactors, and as a result we verify that Goodman-Harpe-Jones subfactors verify our conjecture. Our result also gives a negative answer to a question motivated by a conjecture of Aschbacher-Guralnick.Comment: To appear in Comm. Math. Phy
    corecore