110 research outputs found

    Non-equilibrium thermodynamics. IV: Generalization of Maxwell, Claussius-Clapeyron and Response Functions Relations, and the Prigogine-Defay Ratio for Systems in Internal Equilibrium

    Full text link
    We follow the consequences of internal equilibrium in non-equilibrium systems that has been introduced recently [Phys. Rev. E 81, 051130 (2010)] to obtain the generalization of Maxwell's relation and the Clausius-Clapeyron relation that are normally given for equilibrium systems. The use of Jacobians allow for a more compact way to address the generalized Maxwell relations; the latter are available for any number of internal variables. The Clausius-Clapeyron relation in the subspace of observables show not only the non-equilibrium modification but also the modification due to internal variables that play a dominant role in glasses. Real systems do not directly turn into glasses (GL) that are frozen structures from the supercooled liquid state L; there is an intermediate state (gL) where the internal variables are not frozen. Thus, there is no single glass transition. A system possess several kinds of glass transitions, some conventional (L \rightarrow gL; gL\rightarrow GL) in which the state change continuously and the transition mimics a continuous or second order transition, and some apparent (L\rightarrow gL; L\rightarrow GL) in which the free energies are discontinuous so that the transition appears as a zeroth order transition, as discussed in the text. We evaluate the Prigogine-Defay ratio {\Pi} in the subspace of the observables at these transitions. We find that it is normally different from 1, except at the conventional transition L\rightarrow gL, where {\Pi}=1 regardless of the number of internal variables.Comment: 42 pages, 3 figures, citations correcte

    Adverse drug reactions or events in children with assessment of causality and severity: a retrospective analysis from Bhavnagar

    Get PDF
    Background: Objective was to study the occurrence of adverse drug reactions in pediatric age group in a tertiary care hospital setting.Methods: A retrospective study was undertaken to analyze adverse drug events in pediatrics wards of a tertiary care hospital. Any event marked as ‘suspected adverse drug reaction’ was included in the study and ADR forms were analyzed for causality and severity. Other parameters like age and sex, class of drug, types of ADR, commonly involved systems and polypharmacy were studied.Results: Total 74 cases of admitted patients (13 deaths: 11 infants, 6 neonates) with severe ADR were studied of whom 39% were females. Antimicrobials were the commonest drug class (54%) with Skin most commonly involved. 77% cases were of probable category according to Naranjo’s scale of causality assessment. 11% cases were prescribed polypharmacy.Conclusions: Antibiotics were the class of drug causing maximum ADRs. The commonest system involved was skin. Redness, itching & rashes were the common symptoms. Antimicrobials should be used judiciously. Polypharmacy should be avoided. ADR reporting should be strengthened. Extra vigilance is required for infants and neonate’s prescriptions

    Thermodynamic Comparison and the Ideal Glass Transition of A Monatomic Systems Modeled as an Antiferromagnetic Ising Model on Husimi and Cubic Recursive Lattices of the Same Coordination Number

    Full text link
    Two kinds of recursive lattices with the same coordination number but different unit cells (2-D square and 3-D cube) are constructed and the antiferromagnetic Ising model is solved exactly on them to study the stable and metastable states. The Ising model with multi-particle interactions is designed to represent a monatomic system or an alloy. Two solutions of the model exhibit the crystallization of liquid, and the ideal glass transition of supercooled liquid respectively. Based on the solutions, the thermodynamics on both lattices was examined. In particular, the free energy, energy, and entropy of the ideal glass, supercooled liquid, crystal, and liquid state of the model on each lattice were calculated and compared with each other. Interactions between particles farther away than the nearest neighbor distance are taken into consideration. The two lattices show comparable properties on the transition temperatures and the thermodynamic behaviors, which proves that both of them are practical to describe the regular 3-D case, while the different effects of the unit types are still obvious.Comment: 27 pages, 13 figure

    A Method for Quantitative Real-Time Evaluation of Measurement Reliability When Using Atomic Force Microscopy-Based Metrology

    Get PDF
    In atomic force microscopy (AFM) and metrology, it is known that the radius of the scanning tip affects the accuracy of the measurement. However, most techniques for ascertaining tip radius require interruption of the measurement technique to insert a reference standard or to otherwise image the tip. Here we propose an inline technique based on analysis of the power spectral density (PSD) of the topography that is being collected during measurement. By identifying and quantifying artifacts that are known to arise in the power spectrum due to tip blunting, the PSD itself can be used to determine progressive shifts in the radius of the tip. Specifically, using AFM images of an ultrananocrystalline diamond, various trends in measured PSD are demonstrated. First, using more than 200 different measurements of the same material, the variability in the measured PSD is demonstrated. Second, using progressive scans under the same conditions, a systematic shifting of the mid-to-high-frequency data is visible. Third, using three different PSDs, the changes in radii between them were quantitatively determined and compared to transmission electron microscopy (TEM) images of the tips taken immediately after use. The fractional changes in tip radii were detected; the absolute values of the tip radii could be matched between the two techniques, but only with careful selection of a fitting constant. Further work is required to determine the generalizability of the value of this constant. Overall, the proposed approach represents a step towards quantitative and inline determination of the radius of the scanning tip and thus of the reliability of AFM-based measurements

    Non-equilibrium Thermodynamics: Structural Relaxation, Fictive temperature and Tool-Narayanaswamy phenomenology in Glasses

    Full text link
    Starting from the second law of thermodynamics applied to an isolated system consisting of the system surrounded by an extremely large medium, we formulate a general non-equilibrium thermodynamic description of the system when it is out of equilibrium. We then apply it to study the structural relaxation in glasses and establish the phenomenology behind the concept of the fictive temperature and of the empirical Tool-Narayanaswamy equation on firmer theoretical foundation.Comment: 20 pages, 1 figur

    GROWTH OF INVASIVE AQUATIC MACROPHYTES OVER TAPI RIVER

    Get PDF
    Aquatic macrophytes are important elements of freshwater ecosystems, fulfilling a pivotal role in the ecological functions of these environments and biogeochemical cycles. Although aquatic macrophytes are beneficial, some species can hinder human activity. They can clog reservoirs and reduce water availability for human needs. Surveys of macrophytes are hindered by logistic problems, and remote sensing represents a powerful alternative, allowing comprehensive assessment and monitoring. The objectives of this study was to map temporal changes in the macrophytes using time series multispectral dataset over Tapi River, Surat. The field trip was conducted over the Tapi River on 22nd June 2018, where in-situ spectral response dataset were acquired using ASD Spectroradiometer. Water samples were also collected over three locations, one before entering the city (Kamrej), second at the Sarthana water treatment plant and third at the outer end (causeway). The nutrient concentration was less before entering the city (Ammonical Nitrogen 0.056 mg/L and phosphate 0.0145 mg/l), while higher concentration (Ammonical Nitrogen 0.448 mg/l and phosphate 0.05 mg/l) was observed within the city. Maps of aquatic macrophytes fractional cover were produced using Resourcesat-2/2A (LISS-III) dataset covering a period of 2012–2018. Maximum extent was observed in February-March of every year. Although during monsoon, lot of agriculture run-off and nutrients will come into the river, but main flow of water will dilute its concentration. During summer, the same nutrient concentration will boost these macrophytes due to less availability of stream water. Within the area of 16 km2 between Kamrej and causeway, 3.35 % was covered by macrophytes during March 2013. This area coverage increase to 36.41 % in March 2018. Based on these maps, we discuss how remote sensing could support monitoring strategies and provide insight into spatial variability, and by identifying hotspot areas where invasive species could become a threat to ecosystem functioning

    Exact correlation functions of Bethe lattice spin models in external fields

    Full text link
    We develop a transfer matrix method to compute exactly the spin-spin correlation functions of Bethe lattice spin models in the external magnetic field h and for any temperature T. We first compute the correlation function for the most general spin - S Ising model, which contains all possible single-ion and nearest-neighbor pair interactions. This general spin - S Ising model includes the spin-1/2 simple Ising model and the Blume-Emery-Griffiths (BEG) model as special cases. From the spin-spin correlation functions, we obtain functions of correlation length for the simple Ising model and BEG model, which show interesting scaling and divergent behavior as T approaches the critical temperature. Our method to compute exact spin-spin correlation functions may be applied to other Ising-type models on Bethe and Bethe-like lattices.Comment: 19 page

    Spanning forests and the q-state Potts model in the limit q \to 0

    Get PDF
    We study the q-state Potts model with nearest-neighbor coupling v=e^{\beta J}-1 in the limit q,v \to 0 with the ratio w = v/q held fixed. Combinatorially, this limit gives rise to the generating polynomial of spanning forests; physically, it provides information about the Potts-model phase diagram in the neighborhood of (q,v) = (0,0). We have studied this model on the square and triangular lattices, using a transfer-matrix approach at both real and complex values of w. For both lattices, we have computed the symbolic transfer matrices for cylindrical strips of widths 2 \le L \le 10, as well as the limiting curves of partition-function zeros in the complex w-plane. For real w, we find two distinct phases separated by a transition point w=w_0, where w_0 = -1/4 (resp. w_0 = -0.1753 \pm 0.0002) for the square (resp. triangular) lattice. For w > w_0 we find a non-critical disordered phase, while for w < w_0 our results are compatible with a massless Berker-Kadanoff phase with conformal charge c = -2 and leading thermal scaling dimension x_{T,1} = 2 (marginal operator). At w = w_0 we find a "first-order critical point": the first derivative of the free energy is discontinuous at w_0, while the correlation length diverges as w \downarrow w_0 (and is infinite at w = w_0). The critical behavior at w = w_0 seems to be the same for both lattices and it differs from that of the Berker-Kadanoff phase: our results suggest that the conformal charge is c = -1, the leading thermal scaling dimension is x_{T,1} = 0, and the critical exponents are \nu = 1/d = 1/2 and \alpha = 1.Comment: 131 pages (LaTeX2e). Includes tex file, three sty files, and 65 Postscript figures. Also included are Mathematica files forests_sq_2-9P.m and forests_tri_2-9P.m. Final journal versio

    Thermodynamics and structure of self-assembled networks

    Full text link
    We study a generic model of self-assembling chains which can branch and form networks with branching points (junctions) of arbitrary functionality. The physical realizations include physical gels, wormlike micells, dipolar fluids and microemulsions. The model maps the partition function of a solution of branched, self-assembling, mutually avoiding clusters onto that of a Heisenberg magnet in the mathematical limit of zero spin components. The model is solved in the mean field approximation. It is found that despite the absence of any specific interaction between the chains, the entropy of the junctions induces an effective attraction between the monomers, which in the case of three-fold junctions leads to a first order reentrant phase separation between a dilute phase consisting mainly of single chains, and a dense network, or two network phases. Independent of the phase separation, we predict the percolation (connectivity) transition at which an infinite network is formed that partially overlaps with the first-order transition. The percolation transition is a continuous, non thermodynamic transition that describes a change in the topology of the system. Our treatment which predicts both the thermodynamic phase equilibria as well as the spatial correlations in the system allows us to treat both the phase separation and the percolation threshold within the same framework. The density-density correlation correlation has a usual Ornstein-Zernicke form at low monomer densities. At higher densities, a peak emerges in the structure factor, signifying an onset of medium-range order in the system. Implications of the results for different physical systems are discussed.Comment: Submitted to Phys. Rev.
    • …
    corecore