3,076 research outputs found

    3-D modeling and simulation of 2G HTS stacks and coils

    Full text link
    Use of 2G HTS coated conductors in several power applications has become popular in recent years. Their large current density under high magnetic fields makes them suitable candidates for high power capacity applications such as stacks, coils, magnets, cables and current leads. For this reason, modeling and simulation of their electromagnetic properties is very desirable in the design and optimization processes. For many applications, when symmetries allow it, simple models consisting of 1D or 2D representations are well suited for providing a satisfying description of the problem at hand. However, certain designs such as racetrack coils and finite-length or non-straight stacks, do pose a 3D problem that cannot be easily reduced to a 2D configuration. Full 3-D models have been developed, but their use for simulating superconducting devices is a very challenging task involving a large-scale computational problem. In this work, we present a new method to simulate the electromagnetic transient behavior of 2G HTS stacks and coils. The method, originally used to model stacks of straight superconducting tapes or circular coils in 2D, is now extended to 3D. The main idea is to construct an anisotropic bulklike equivalent for the stack or coil, such that the geometrical layout of the internal alternating structures of insulating, metallic, superconducting and substrate layers is reduced while keeping the overall electromagnetic behavior of the original device. Besides the aforementioned interest in modeling and simulating 2G HTS coated conductors, this work gives a further step towards efficient 3D modeling and simulation of superconducting devices for large scale applications

    A large-N analysis of the local quantum critical point and the spin-liquid phase

    Full text link
    We study analytically the Kondo lattice model with an additional nearest-neighbor antiferromagnetic interaction in the framework of large-N theory. We find that there is a local quantum critical point between two phases, a normal Fermi-liquid and a spin-liquid in which the spins are decoupled from the conduction electrons. The local spin susceptibility displays a power-law divergence throughout the spin liquid phase. We check the reliability of the large-N results by solving by quantum Monte Carlo simulation the N=2 spin-liquid problem with no conduction electrons and find qualitative agreement. We show that the spin-liquid phase is unstable at low temperatures, suggestive of a first-order transition to an ordered phase.Comment: 4 pages and 1 figur

    Self-consistent Modeling of the IcI_c of HTS Devices: How Accurate do Models Really Need to Be?

    Full text link
    Numerical models for computing the effective critical current of devices made of HTS tapes require the knowledge of the Jc(B,theta) dependence, i.e. of the way the critical current density Jc depends on the magnetic flux density B and its orientation theta with respect to the tape. In this paper we present a numerical model based on the critical state with angular field dependence of Jc to extract the Jc(B,theta) relation from experimental data. The model takes into account the self-field created by the tape, which gives an important contribution when the field applied in the experiments is low. The same model can also be used to compute the effective critical current of devices composed of electromagnetically interacting tapes. Three examples are considered here: two differently current rated Roebel cables composed of REBCO coated conductors and a power cable prototype composed of Bi-2223 tapes. The critical currents computed with the numerical model show good agreement with the measured ones. The simulations reveal also that several parameter sets in the Jc(B,theta) give an equally good representation of the experimental characterization of the tapes and that the measured Ic values of cables are subjected to the influence of experimental conditions, such as Ic degradation due to the manufacturing and assembling process and non-uniformity of the tape properties. These two aspects make the determination of a very precise Jc(B,theta) expression probably unnecessary, as long as that expression is able to reproduce the main features of the angular dependence. The easiness of use of this model, which can be straightforwardly implemented in finite-element programs able to solve static electromagnetic problems, is very attractive both for researchers and devices manufactures who want to characterize superconducting tapes and calculate the effective critical current of superconducting devices

    Density inhomogeneities and Rashba spin-orbit coupling interplay in oxide interfaces

    Get PDF
    There is steadily increasing evidence that the two-dimensional electron gas (2DEG) formed at the interface of some insulating oxides like LaAlO3/SrTiO3 and LaTiO3/SrTiO3 is strongly inhomogeneous. The inhomogeneous distribution of electron density is accompanied by an inhomogeneous distribution of the (self-consistent) electric field confining the electrons at the interface. In turn this inhomogeneous transverse electric field induces an inhomogeneous Rashba spin-orbit coupling (RSOC). After an introductory summary on two mechanisms possibly giving rise to an electronic phase separation accounting for the above inhomogeneity,we introduce a phenomenological model to describe the density-dependent RSOC and its consequences. Besides being itself a possible source of inhomogeneity or charge-density waves, the density-dependent RSOC gives rise to interesting physical effects like the occurrence of inhomogeneous spin-current distributions and inhomogeneous quantum-Hall states with chiral "edge" states taking place in the bulk of the 2DEG. The inhomogeneous RSOC can also be exploited for spintronic devices since it can be used to produce a disorder-robust spin Hall effect.Comment: 13 pages, 15 figure

    Theory of the spin galvanic effect at oxide interfaces

    Full text link
    The spin galvanic effect (SGE) describes the conversion of a non-equilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO3_3 and SrTiO3_3. Here we analyze the SGE for oxide interfaces within a three-band model for the Ti t2g_{2g} orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to provide an appropriate description of the experimental data.Comment: 5 pages, 3 figure

    Superconductor/ferromagnet heterostructures exhibit potential for significant reduction of hysteretic losses

    Full text link
    First experimental observations of the ferromagnetic shielding effect in high-Tc superconducting coated conductors were carried out. Experimental results were compared to simulations calling upon finite-element calculations based on the H-formulation of Maxwell equations to model superconducting strips with ferromagnetic shields. Samples of copper-stabilized coated conductors were electroplated with nickel shields and afterwards characterized. Both externally applied oscillating transverse magnetic fields as well as transport currents were studied. Having observed promising gains with respect to the reduction of ac losses in both cases, we further investigated the potential of ferromagnetic shielding. The numerical model was able to reproduce and also predict experimental results very well and will serve as an indispensable tool to determine the potential of soft ferromagnetic materials to significantly reduce hysteretic losses.Comment: 4 pages, 3 figures, 1 tabl

    Signatures of nematic quantum critical fluctuations in the Raman spectra of lightly doped cuprates

    Full text link
    We consider the lightly doped cuprates Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} and La2x_{2-x}Srx_xCuO4_4 (with x=0.02x=0.02,0.04), where the presence of a fluctuating nematic state has often been proposed as a precursor of the stripe (or, more generically, charge-density wave) phase, which sets in at higher doping. We phenomenologically assume a quantum critical character for the longitudinal and transverse nematic, and for the charge-ordering fluctuations, and investigate the effects of these fluctuations in Raman spectra. We find that the longitudinal nematic fluctuations peaked at zero transferred momentum account well for the anomalous Raman absorption observed in these systems in the B2gB_{2g} channel, while the absence of such effect in the B1gB_{1g} channel may be due to the overall suppression of Raman response at low frequencies, associated with the pseudogap. While in Y0.97_{0.97}Ca0.03_{0.03}BaCuO6.05_{6.05} the low-frequency lineshape is fully accounted by longitudinal nematic collective modes alone, in La2x_{2-x}Srx_xCuO4_4 also charge-ordering modes with finite characteristic wavevector are needed to reproduce the shoulders observed in the Raman response. This different involvement of the nearly critical modes in the two materials suggests a different evolution of the nematic state at very low doping into the nearly charge-ordered state at higher doping.Comment: 12 pages with 10 figures, to appear in Phys. Rev. B 201
    corecore