1,422 research outputs found

    Veterinary Medical Board

    Get PDF

    Bureau of State Audits

    Get PDF

    Veterinary Medical Board

    Get PDF

    Real-time thickness measurement of MCC ablator material

    Get PDF
    One of the most favorable characteristics of the Space Shuttle Program is the reusability of two of its primary components: the orbiter itself and the Solid Rocket Boosters (SRB). The SRB's provide the primary source of propulsion for the Space Shuttle during take-off after which they are recovered for refurbishment and reuse. During refurbishment, the SRB's are stripped of all remaining ablative (heat resistant) coating. A new layer is applied to the appropriate sections (nose cone, frustum, forward skirt, and aft skirt). It is the process of applying the ablative coating which provided the impetus for this project. The thickness of this protective layer is considered to be of primary importance to the level of thermal protection provided. The objectives of this effort are to investigate possible techniques for measuring the thickness of MCC, and if possible to test the specific capabilities of those considered good candidates for implementation. The system would be able to take measurements in real-time as close to the spray gun as possible. This will allow the information to be used in the control of the process without an inordinate time delay between a measurement and its appropriate response. The thickness of the deposited material is to be measured with less than 0.100 in if uncertainty. This is the defined tolerance window for the ablator thickness. Finally, it must operate within the confines of the chamber which encloses the turntable, robot, and spray system, and therefore is required to be insensitive to, or at least maintainable in, that environment

    Cal-OSHA

    Get PDF

    Senate Office of Research

    Get PDF

    Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish

    Get PDF
    Citation: Passow, C. N., Greenway, R., Arias-Rodriguez, L., Jeyasingh, P. D., & Tobler, M. (2015). Reduction of Energetic Demands through Modification of Body Size and Routine Metabolic Rates in Extremophile Fish. Physiological and Biochemical Zoology, 88(4), 371-383. doi:10.1086/681053Variation in energy availability or maintenance costs in extreme environments can exert selection for efficient energy use, and reductions in organismal energy demand can be achieved in two ways: reducing body mass or metabolic suppression. Whether long-term exposure to extreme environmental conditions drives adaptive shifts in body mass or metabolic rates remains an open question. We studied body size variation and variation in routine metabolic rates in locally adapted populations of extremophile fish (Poecilia mexicana) living in toxic, hydrogen sulfide-rich springs and caves. We quantified size distributions and routine metabolic rates in wild-caught individuals from four habitat types. Compared with ancestral populations in nonsulfidic surface habitats, extremophile populations were characterized by significant reductions in body size. Despite elevated metabolic rates in cave fish, the body size reduction precipitated in significantly reduced energy demands in all extremophile populations. Laboratory experiments on common garden-raised fish indicated that elevated routine metabolic rates in cave fish likely have a genetic basis. The results of this study indicate that adaptation to extreme environments directly impacts energy metabolism, with fish living in cave and sulfide spring environments expending less energy overall during routine metabolism

    A new liver perfusion and preservation system for transplantation Research in large animals

    Get PDF
    A kidney perfusion machine, model MOX-100 (Waters Instruments, Ltd, Rochester, MN) was modified to allow continuous perfusion of the portal vein and pulsatile perfusion of the hepatic artery of the liver. Additional apparatus consists of a cooling system, a membrane oxygenator, a filter for foreign bodies, and bubble traps. This system not only allows hypothermic perfusion preservation of the liver graft, but furthermore enables investigation of ex vivo simulation of various circulatory circumstances in which physiological perfusion of the liver is studied. We have used this system to evaluate the viability of liver allografts preserved by cold storage. The liver was placed on the perfusion system and perfused with blood with a hematocrit of approximately 20% and maintained at 37°C for 3 h. The flows of the hepatic artery and portal vein were adjusted to 0.33 mL and 0.67 mL/g of liver tissue, respectively. Parameters of viability consisted of hourly bile output, oxygen consumption, liver enzymes, electrolytes, vascular resistance, and liver histology. This method of liver assessment in large animals will allow the objective evaluation of organ viability for transplantation and thereby improve the outcome of organ transplantation. Furthermore, this pump enables investigation into the pathophysiology of liver ischemia and preservation. © 1990 Informa UK Ltd All rights reserved: reproduction in whole or part not permitted
    corecore