10,233 research outputs found
Improvement of the second- and third-moment modeling of turbulence: A study of Reynolds-stress closure model
Four parts of the Reynolds-stress closure modeling are reported: (1) improvement of the k and epsilon equaitons; (2) development of the third-moment transport equation; (3) formulation of the diffusion coefficient of the momentum equation by using the algebraic-stress model of turbulence; and (4) the application of the Reynolds-stress model to a heat exchanger problem. It was demonstrated that the third-moment transport model improved the prediction of the triple-velocity products in the recirculating and reattaching flow regions in comparison with the existing algebraic models for the triple-velocity products. Optimum values for empirical coefficients are obtained for the prediction of the backward-facing step flows. A functional expression is derived for the coefficient of the momentum diffusion by employing the algebraic-stress model. The second-moment closure is applied to a heat transfer problem. The computations for the flow in a corrugated-wall channel show that the second-moment closure improves the prediction of the heat transfer rates by 30% over the k - epsilon model
A study of Reynolds-stress closure model
A hybrid model of the Reynolds stress closure was developed. This model was tested for various sizes of step flow, and the computed Reynolds stress behavior was compared with experimental data. The third order closure model was reviewed. Transport equations for the triple velocity correlation were developed and implemented in a numerical code to evaluate the behavior of the triple velocity products in various regions of the flow field including recirculating, reattaching, and redeveloping flow domains
A Wait-Free Stack
In this paper, we describe a novel algorithm to create a con- current
wait-free stack. To the best of our knowledge, this is the first wait-free
algorithm for a general purpose stack. In the past, researchers have proposed
restricted wait-free implementations of stacks, lock-free implementations, and
efficient universal constructions that can support wait-free stacks. The crux
of our wait-free implementation is a fast pop operation that does not modify
the stack top; instead, it walks down the stack till it finds a node that is
unmarked. It marks it but does not delete it. Subsequently, it is lazily
deleted by a cleanup operation. This operation keeps the size of the stack in
check by not allowing the size of the stack to increase beyond a factor of W as
compared to the actual size. All our operations are wait-free and linearizable.Comment: 21 pages, 5 figure
Third-moment closure of turbulence for predictions of separating and reattaching shear flows: A study of Reynolds-stress closure model
A numerical study of computations in backward-facing steps with flow separation and reattachment, using the Reynolds stress closure is presented. The highlight of this study is the improvement of the Reynold-stress model (RSM) by modifying the diffusive transport of the Reynolds stresses through the formulation, solution and subsequent incorporation of the transport equations of the third moments, bar-u(i)u(j)u(k), into the turbulence model. The diffusive transport of the Reynolds stresses, represented by the gradients of the third moments, attains greater significance in recirculating flows. The third moments evaluated by the development and solution of the complete transport equations are superior to those obtained by existing algebraic correlations. A low-Reynolds number model for the transport equations of the third moments is developed and considerable improvement in the near-wall profiles of the third moments is observed. The values of the empirical constants utilized in the development of the model are recommended. The Reynolds-stress closure is consolidated by incorporating the equations of k and e, containing the modified diffusion coefficients, and the transport equations of the third moments into the Reynolds stress equations. Computational results obtained by the original k-e model, the original RSM and the consolidated and modified RSM are compared with experimental data. Overall improvement in the predictions is seen by consolidation of the RMS and a marked improvement in the profiles of bar-u(i)u(j)u(k) is obtained around the reattachment region
Cascades: A view from Audience
Cascades on online networks have been a popular subject of study in the past
decade, and there is a considerable literature on phenomena such as diffusion
mechanisms, virality, cascade prediction, and peer network effects. However, a
basic question has received comparatively little attention: how desirable are
cascades on a social media platform from the point of view of users? While
versions of this question have been considered from the perspective of the
producers of cascades, any answer to this question must also take into account
the effect of cascades on their audience. In this work, we seek to fill this
gap by providing a consumer perspective of cascade.
Users on online networks play the dual role of producers and consumers.
First, we perform an empirical study of the interaction of Twitter users with
retweet cascades. We measure how often users observe retweets in their home
timeline, and observe a phenomenon that we term the "Impressions Paradox": the
share of impressions for cascades of size k decays much slower than frequency
of cascades of size k. Thus, the audience for cascades can be quite large even
for rare large cascades. We also measure audience engagement with retweet
cascades in comparison to non-retweeted content. Our results show that cascades
often rival or exceed organic content in engagement received per impression.
This result is perhaps surprising in that consumers didn't opt in to see tweets
from these authors. Furthermore, although cascading content is widely popular,
one would expect it to eventually reach parts of the audience that may not be
interested in the content. Motivated by our findings, we posit a theoretical
model that focuses on the effect of cascades on the audience. Our results on
this model highlight the balance between retweeting as a high-quality content
selection mechanism and the role of network users in filtering irrelevant
content
Numerical study of a separating and reattaching flow by using Reynolds-stress tubulence closure
The numerical study of the Reynolds-stress turbulence closure for separating, reattaching, recirculating and redeveloping flow is summarized. The calculations were made for two different closure models of pressure - strain correlation. The results were compared with the experimental data. Furthermore, these results were compared with the computations made by using the one layer and three layer treatment of k-epsilon turbulence model which were developed. Generally the computations by the Reynolds-stress model show better results than those by the k-epsilon model, in particular, some improvement was noticed in the redeveloping region of the separating and reattaching flow in a pipe with sudden expansion
- …
