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ABSTRACT

This report contains four parts of the Reynolds-stress closure modeling:
1) improvement of the k and ¢ equations, 2) development of the third-moment
transbort equation, 3) formulation of the diffusion coefficient of the momen-
tum equﬁtion by ustng the algebraic-stress mcde]-é#"turbu]ence. and 4) the
application of the Reynalds-stress model to a heat exchanger problem., It has
been demonstrated that the third-moment transport mode) improved the predic-
tion of the triple-velocity products in the recirculating and reattaching flow
regions in comparison with the existing algetraic models for the triple-~ -
velocity products. Then, optiﬁum values for empirical coefficients -are ob-
tained for the prediction of the backward-facing step flows. Furthermore, a
functional expression {s derive& for the cozfficient of the momentum diffusion
by employing the algebraic-stress model. Finally, the second-moment closure
is applied to a2 heat transfer problem. The computations for the flow in 2
corrugatedluaII channei show that the second-moment closure improves the pre-
diciion of the heat transfer rates by 30X over the k - ¢ model. In this

way, the application of the Reynolds stress model to heat transfer problems is

demonstrated to be promising.
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PREFACE

This report outlines the progress of the research conducted from July
1985 to Jonuary 1986. During this period, the third-moment closure model was
studied as well as refining the second-moment closure. The development of
transport equa*ions for the third-moments of turbulence velocity fluctuation
has been pursued since it was observed, in the last research project period,
that none of the existing algebraic third-moment models can predict the levels
of the triple velocity products correctly for the backward-facing step flows.
The predi:tions by the algebraic models were particulariy poor in the rcﬁircu-
lating flow regions.

In this report it is shown that the currently developed transport equa-
tions of the third-moments improve the prediction of the triple-velocity pro-
ducts of turbulence fluctuations in comparison with the algebraic third-moment
rodels.

In carrying out this project the authors are grateful for the assistance
of Messrs. A, Bagherlee, R. Smith, T. Niess, and V. Kodali who performed a

large amount of programming and computations.
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MOHENCLATURE

thannel step height
anisotropy

channel width
constants used in turbulence mode)

coefficients for near-wall Reynolds stresses
diameter of the disk

diffusion rate of the Reynolds stresses
diameter of the tube

average skin friction factor

function for wall correction

gene-ation rate of turbulence kinetic energy, K
generation réte of Reynolds stresses

local heat transfer coefficient

'step height

secondary generation rate of Reynolds stresses
turbulence kinetic energy (=u§)

length of fin

Kusselt number based on 2b

averaged Nusselt number

pressure fluctuation

mean pressure

wall heat flux

radial coordinate
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Subscripts
1, Jok, 2, m

Reynolds number based on 2b
temperature
bulk temperature

wal) temperature

fluctuating velocity in x direction

mean velocity
inlet stream velocity

averaged mean velocity

fluctuating velocity in y or r direction
mean velocity in y or r direction

fluctuating velocity in z or o direction

Cartesian coordinates

dimensionless distance from wall to the first numerical

1/2y/v)

node-point, (= k
constants used in Eq. (19)
thermal diffusivity

Kronecker delta

energy dissipation raté
coordfnate in azimuth direction

dynamic viscosity

-kinematic viscosity

density
Prandtl number

pressure~strain correlation

tensor notations
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V. INTRODUCTIGH

In computations of turbulent separated shear flows, it has become more
common to use the second-order closure of turbulence. While modern computa-
tional techniques enable us to successfully predict most of the simple turbu-‘
lent shear flows, 1t is still difficult to accurately predict the separated
and reattaching shear flow particularly when it is accompanied by a flow
recirculation. This is partly because the computation should Ee performed
with an elliptic approach which requires lérge amounts of computer time and
storage, and partly because a turbulence model that can predict such complex é
turbulent flows (including flow reattachment, flow recirculation and a . §
recovering boundary layer) has not yet been completely developed for universal
usage.

A large number of experimental studies on this subject have been reported
in the last two decades. The Reynolds stresses in the reattachment zone were

2 3

obtained by Etheridge and Kemp‘. Kim et al.”, Smyth™, Eaton and

[N RPS RS S,

Johnston4. etc. Commonly it has been shown that the turbulence energy level

reaches a prak value approximately one step height upstream of the reattach-

L ety b
. .

ment point, then decays rapidly in the streamwise direction toward the wall,
although it decays relatively slowly along the wall in the wall vicinity
region. This feature is in contrast'with free shear flows which are not con-
strained by the-so1id wall. It is also noted that the recirculating zone
affects the reattaching shear layer resulting in higher turbulence energy

levels near the reattachment zone.

Although the measurements of nigher-order turbulence moments are scarce
in 1iterature, a few third-moment data are available. The triple-velocity

products were measured by Chandrsuda and Bradshaw5 by using a hot-wire
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anemomater for a channe) with a larger channel width of 3.5 step heights.
priver and Seegmiller6 used a channel with a width of 9 step heights wherein
the boundary layer thickress just above the step was atout 1.5 step heights
having an inviscid core region outside the separating layer. They measured
the secondand third-moments of turbulence velocity fluctuations with a two-

component LDV by varyihg the pressure gradient in the inviscid core region.

Through this MASA project, the authors have investigated the featurss of

the second- and third-moments in the reattaching and recirculating flow re-
gions. First, the existing model of the Reynolds-stress transport equations
was modified and adjusted for the ellipiic f]ous.7 The computations were
made for several different cases of flow and geometry, and the results were
compared witn the k ~ ¢ model and the algebraic~stress model of Rodi.8
Although the model used by Amano and Goe]7 was tﬁe hybrid mcdel of the
Boussinesq viscosity anq the Reynolds-stress equations, the prediction of the
normal and shear stresses was improved in the reattaching and the recovering
region behind a s*ep.

Meanwhile, i1 was observed that the triple-velocity products decay
rapidly in the reattaching region which creates steep changes in the diffusion
rates of the Reynolds stresses. In the last two rcports.g"0 most of the
existing third-moment models were tested to determine whether they could be
employed for the prediction of such reattaching shear layers or not. As a
result, it was recommended that a transport model for the third-moment should
be evolved since none of the algebraic models for the third-moments gives
sufficiently high levels in a complex turbulent flow although the models are

satisfactory for parabolic thin shear flows.
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In this repbrt. the work performed s summarized in the following steps:

1. Incorporation of the non-isotropic treatment for the diffusion rates
of the k and ¢ equations.

2. Determination of the empirical coefficients of the above mentioned
diffusion rates.

3. Development of the transport equations for the third-moments of
turbulence.

4. Testing the third-moment model for the reattaching shear flows in
order to determine the coefficients which appear in the third-moment
transport equations. |

5. Formulation of the correlation function used in the diffusion rates
of the momentum equations.

6. Application of the second-moment closure to a heat transfer problem.

In the above procedure, step 5 was achieved by using the algebraic-stress
mode] because of its simple formulation of the Reynolds stresses. In order to
eliminate the coﬁplexity due to the wall flows, this test was limited to only
wakes which were created behind steps. In step 6, a periodically corrugated
wall channel was considered. This is the basic study of a compaét heat ex-

changer.
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2. THE SECOND-HTHENT CLGSURE HODEL

2.1 Prelimina, y Remarks

Both the turbu1ence>energy. k, and the energy dissipation rate, ¢, are
always used to define the time scale, k/c, and the length scale, k3’2/c.
Therefore, 1f the k-~ and c-equations are not functioning with the stress
equations in the same order of treatment, the modeling is not considered to be
complete, and thus the overall results will not he improved. To deal with the
higher order forms of these equations, the originail (uncloseﬁ) forms need to
be employed to define the turbulence energy aud the energy dissipation rate
and then some empirical correlations have to be reevaluated for the flows
considered in the present study.

The generation and dissipation rates of the k-equation do not require any
empirical coefficient. On the other hand, the generation and dissipation
rates of the c-equation have empirical coefficients which have been used by
a large number of researchers for more than a decade Therefore, the key
terms which may improve the model are the diffusion rates of the k- and
c-equations that need revising for the second-moment closure.

In the second-moment closure, the conventional Boussinesqg viscosity (dif-
fusivity) model should be replaced by the second-moment expression. In this
process, the empirical coefficient for the diffusion rates of the k- and
c-equations muﬁt be determined. However, these coefficients have not yet
been evaluated for universal usage. The determination of the values for these
diffusion coefficients is attempted in thié section for the better prediction

of the reattaching and recirculating flows.

- -

&

e VR WYL momen T Y

L T e
.

P Y

Py P

AT e g e b




2.2 Improvement of k, ¢ and ghé Reyno'ds-Stress_fquations

The transport equation which describes the Reynolds-itress variation in

an elliptic flow field 1s derived as

au aU - 11] ou
___.11 _.J. 1,1
Uy ox, ‘“J“z ax‘ + uguy ax, ( )
(1) (11) (1)

au u ou, au

____1 P it M |

[" ax, ettt i ug) - uguguyd - 2v 3%, 3%,

(111) (iv)

from which the turbulence kinetic energy is also derived. The definition cf

the turbulence kinetic energy is

2

k = uj/2 .(2)

There are two ways to obtainm k; one is to solve Eg. (1) for u2. v2. and
uz and substitute th: results into Eq. (2), and the other way is to formu-
Yate the transport egquation for k itself. When the problem is in a two-
dimensional plane coordinate syétem. the number of equations which need to be
solved 1s the same either way. Here the transport equation for k is converted
into the second-moment closure rather than solving all three normal components
of the Reynolds stress and summing them to obtain k. This is hecause the
k-equation is widely used as an indicator of turbulence levels. Thus, the
k-equation cannot be omitted when one is solving the two-equation model or the
algebraic-stress model. '

Upon contracting Eq. (1) by setting j equal to i énd dividing by 2, it

yields the k-equation as follows:

).

R SR

T N L

e e ML




2 e e —
, _ - au . - u;“u du, au
Uy x- = - ugly 521 "o v i-- R Uy = 12 Y-y 351 5?1 (3)
] "8 t i S e T
(1) - (11) (111)

Terms (1) and (111) on the right-hand side of Eq. (3) represent the generation
and the dissipation rates, respectively. The dissipation can be determined by
solving the c-equation. Term (11}, the diffusion rate, may be replaced by

the following form,

(1) = 33; (c, 5 TN g%;) (4)

where it is assumed that the second term in the parenthesis is negligibly
small in comparison with the third one in (1) in 2 large-scale turbulence.
This assumption is supported by Irwin's measurements of self-preserving wall

j_ets.n

The first term in (i1) is kept in the computation in order to
account for the viscous effect near the wall.

To obtain the Reynolds stresses, Eq. (1) was closed as follows:

auiu aU1 au, 2 : '
= - —. ——naly - £
U! axl (u uy axl +u ug ax!) + °1j + Dij 3 6ijc {5)

where the pressure-strain correlation, ¢1J; is divided into three parts:
the Rotta term’z. the rapid ‘l’.er‘m.'3 and the viscous term.]q These are
combined and given as follows:
. £ = 2 - -2,
P15 % 7 o1 i (U5 - F 84 ) 3 5139

Co2 (645 i

4
+ c@3 (uU -3 51j8) (6)
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where

aU1
6 =-uuy, —
i axJ
au au
— — %
G, =~ (u,u -1 + u.u, —)
1 i 3%y k ax,
auk aUk _ .
Mg = 7 G By * Yyt o) : (M
C¢l = 7.5 - 0.125 fH
C¢2 = 0.4 - 0.015 fw

C¢3 = 0.015 fH

and where fw is a functich that controls the strength of the wall

correction. " Here it is taken to be proportional to the length scale,

372

k™" “/c.

The diffusion rate, Dij' is conventionally approximated as

au,u
-2 k " i
Dij ax, ¢ Y2m ax ) _ (8)

for the computation of 5;53 which is a rather rough approximation because
the diffusion rate contains the triple-velocity products. A more extensive
model fot the triple-velocity products ;;;;Ek is given in the next

chapter.

The energy dissipation rate :quation is given as




My b Ak Rk
3! du, au
___¢ o 41
Yy axg = "k (Coy vyYy %, ¢ Ce2 xg ax, |
(1) (11) (9)

-2 vy ot Rl 223 i Y TS

axl L axl ax‘ 3 axj xJ ax‘

(111) (1v) (v)

where t:‘.l = 1.45% and t:‘2 = 1.92 which have been used to date by a num-
ber of researchers as was discussed in section 2.1. The generation (1) and
the destruction (11) terms are evaluated using a direct approach. The diffu-

sion rate is modified in a similar form as Eq. (4):

(115) + (4v) + (v) = 5%— c

kK = ¢
y (e e Y% ax) (10)

]

The coefficients Ck and c‘ were recommended to be 0.31 and 0.15, raspec-
tively, by Pope and Nhitelau.’s Since these values are appropriate only for
simple free shear flows, more extensive tests for these coafficient: are made
for the computations of reattaching shear flows. The optimum values for these

coefficients are recommended in the following subsection.

2.3 Computed Results and Discussion

The flow region considered is given in Fig. 1. At the inlet of the flow
field the prescribed values are givén to all variables; they»are ba.ically
taken from the experimental data with which the results are compare.. Along
the top portion and the outflow seczion of the computational domain, the

continuative boundary conditicn is applied.
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At the wa)) boundaries, the ®wall law® s used to specify mzan veloci-
ties, turbulence %Xinetic energy, and the Reynolds stresses. On determining
proportional constants between k and 5:33 in the wali-vicinity region, we

obtatned the following relations for E:E}:

T - (1= y dp ' '
"1"J C,J k-1 ‘ij) » dx 1)
where x and y are streamwise and transverse coordinates, respectively. The

coefficlients C‘j used here gre taken from' Ref. 9.

C,, = 1.21,

=0.24, ¢, =028, (12)

1" €22

The dissipation rates along the wall are obtained under the ®*local egyuilibrium
condition®; that is, the length scale near the wall is proportional to the
distance from the wall.

The soluiion domain consists of a 60HxSH arca with 52x52 grid points.
The grid expands at rates of 3% and 2% in x and y directions, respectively.
This system was selected after a nunber of grid tests ‘o produce the optimum
grid-independent condition for the computation of mean velccities and the
second-moments of the turbulent velocity fluctuations.

Figures 2 through 6 show the computerd results of mean velocity ond the
Reynolds stresses at scveral streamsise Yocations behind the step. By using
the present model for ne” = 32,000, the dimensionless distance, y+. from
the solid w§11 to the first numeric:1 node-point varies from 16 to 37. Here
ReH denotgs the Reynolds number bascd on the step height H. The typical CPU
time consumed for one computation tuok approximately 30 minutes on a UNIVAC
1100 with about 300 iterations. It is also found that the CPU time depends
sTightly on the values of the coefficients Ck and Ct in Eqs. (4) and
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(10). Harz2ly, the computations with Ck e .31 &ng C‘ « 0.15 took about
16% more CPU time and 50 additional iteraticns than in the cases of C, = 0.1
and c‘ = 0.3.

As shown in Figs. 2-6, the profiles of the Reynolds stresses computed
with the coefficients ck = 0.31 and c‘ = 0.15, which are presently
recommendad for free shear 1§yers. are about 20% to 30X lower than the experi- -
mental data of Driver and Seegmn‘ler6 for the normal stresses, and 14% lower
for the shear stresses. As a result, the levels of the mean velocities in the
shear layer region are 20% higher than the éxperimental data due to a reduc-
tion in turbulent diffusion rates.

In order to improve the prediction of these turbulence stressei in the
reattaching shear layer, a number of parametric tests have been performed for
different values of the diffusion coefficients. It was discerned that the
smaller values for Ck and larger values for c‘ gave better results in
comparison with measurcd data. _This is because the larger values of Ck
cause the diffusion of turbulence energy to increase, thus resulting in lower
Yevels of the Reyqo]ds stresses. Similarly, the smaller values of cc; in
turn, increase the dissipation rate of the turbulence energy which results in
a reduction in the turbulence energy.

In the present flow field an extra effect is created by the recirculating
flow which occurs below the reattaching shear layer. The recirculating flow
at the corner of the step and the bottom Qa]] enhances the level of turbulence
ene~gy in the separated flow resulting in much higher energy at the reattach-
ing region, and this energy is trénsported downstream.

After performing parametric tests it was found that the combination of
Ck = 0.1 and C‘ = 0.3 gave the best results for bofh the mean velocity

and the Reynolds stresses. It is also observed in figs. 2-6 that even the

- 12 -
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Boussinesq msdel™ gives better results than the Reynolds-stress model with
ck = 0.31 and c‘ = (0.15. The improvement made by the Reynolds-stress

model with the new coefficients Ck = (3,7 and C‘ = 0.3 is primarily at-
tributed to the inclusion of the second-moments in the diffusion terms which
account for the non-fsotropic effects. Table 1 compares three models

discussed above.

TABLE V. Diffusion terms for k and ¢ equations

Ck Ce Cy Agreement With
gExperiments
Reynolds-stress model
Pope and thitelaw 2.31 0.15 Not Used Bad
Present Study 0.1 0.3 Hot Used Good
Boussinesqg Hoedel Hot Used Not Used 0.09 A Fair

The turbu1ence'energy balance is examined by using both the presently
determined Reynolds-stress model and the Boussinesq model (cases 2 i..d 3 fn
Table 1, respectively) and is shown in Figs. 7-11. The variation of the
convection term (Fig. 7) shows that both models give equally reasonable levels
at several different locations. For the distributions of the diffusion term,
however, the computed results do not agree well with the experimental data in

the recirculating fegion. as shown at x/H = 3.9 in Fig. 8. This is the reason

*The Boussinesq model has the diffusion term in the following form:

2
I k24
D¢ ax'_ (0.09 oc axz)

where ¢ represents k or ¢, and o stands for Prandtl number for k or c.

- 13 -
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vhy the triple-velocity products that represent the diffusion of the Reynolds
stresses are examined by using the transport equations for 6;;;;; in

this project. - Botn the computed distributions of the production (Fig. 9) and
the dissipation (Fig. 10) are relatively in accordance with the experimental'
data although both models always slightly overpredict these quantitfes.

The overall balance of these terms s comnared in Fig. 11. Here the
computations are made by using the Reynolds-stress model wifh the presently
recommended diffusfon coefficients. It is observed that both the production
and dissipation rates predominate in the shear layer near thé step, but these
levels decay quickly toward downstream. On the contrary, the diffusion and
the convection rates stay almost at constant levels in the strearwise direc-

tion while they vary rapidly in the transverse direction.

2.4 Sumrmarizing Remarks

In this section, it has been shown that both C, and C_ are con-
siderably influential in the results of turbulence quintities and also in the
numerical convergence history of the iteration procedure. This indicates that
the diffusion process of the turbulence energy in the reattaching shear layer
is significant which is in contrast with the boundary layer flows. Thus, it
is concluded that the determination of the diffusion coefficients should be
done carefully. Probably, a more elaborate functional expression will suffice
the requirement rather fhan employing the constant55

Secondly, it became clear thai the third-moment closure should be intro-
duced for better understanding of “he diffusinn process in the flow recircula-

tion region. This is carried out in the next chapter.
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3. THE THIRD-HOHENT CLOSURE HODEL

3.1 Preliminary Remarks

In closing the Reynolds-stress equation (1), the terms of the pressure-
strain (11) and the diffusion (141) have been approximated by Eqs. (6) and
(8), respectively. The question arises whether these approximations are
universally accepted or not. With respect to the pressure-strain correlation,

10 and the tests for

13 16

several models have been examined in the latest report,
the best model revealed that three models by Naot et al., = Naot et al.,
and Launder et a1.14 produced essentially‘the same results. In this

chapter, attention is primarily fccussed on the diffusion term (term (11§) in

Eq. (1)).

- g

3.2 Existing Hodels and the Transport Hodel for the Third-HMoments

Term (111) in Eq. (1) represents the diffusion of the Reynolds stresses

due to molecular viscosity, pressure fluctuations, and turbulence velocity

-

fluctuations. It has been shown that the diffusion due to molecular viscosity B

and pressure fluctuations is negligibly small at large turbulence Reynolds ; %

numbers.* Thus, the triple-velocfty products are the most dominant diffu- !

sive agency for the Reynolds stresses. b
It is known that the higher moments of turbulence fluctuating velofity

3 TInis

vary rapidly in the reattaching shear layer towards a solid wall.
affects the accuracy of the computation in the diffusive term of the Reynolds
st-esses because 1t‘contains the third-moment velocity fluctuations. It was

discussed in the last report10 that the triple-velocity products need to be

*These terms appear to be small in most circumstances since turbulence energy
budgets balance, to within experimental error, even when these are neglected.
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evaluated in & transport equation model rather than fn an algebraic form be-

cause the convection and generation of the triple-velocity products have to be

taken suitably into account according to the change in the mean strain rates.
For this reason a full transport equation model of the triple-velocity pro-
ducts is developed and used for the prediction in the reattaching shear flows.

The complete equation is given as

_au au au
- N brarrareu SN —k ot i |
Up 3xg (MilgU) T (0t ae Nt g t Y B
(1)

ou, u au,u qu,u :

—_— p  —— %Yy — 9yl
+ (uiuj —s;;- + "j"k -32;— + U Uy axg ) (13)
(11)

3D
+ uku1 )

ATy - L ap_
ax! (uiujukul) o (uiu + U axj

u, 8.
| J axy 3k axy
(111) (iv)

where terms (i) and (1) represent the generation due to the mean strain rate
and the generation due to turbulence stresses, respectively. Terms (1i§) and
(iv) in Eq. (13) both represent the diffusion rate of the triple-velocity

products. Here term (1§1) 1is correlated by assuming Gaussian form as follows:

3
(1i1) = ax, (piuj T uUy + Ul -_ujun + "kuj . uiu!)
and term (iv) is given as:
(iv) = - ¢ f uyugu . . (14)
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Then the final form of Eq. (13) becomes

a 2u, au, au
Uy ax, (ugugup) = - (uguguy . *+ugu Uy ax, + Upugug 3“1)

du,u,u
+ a_a—. (“ _1.—.-1_&)
X‘ oX

(15)
du,u Ju,u du. u
- (T Tk k3 e =
(uuy ax, *+ Uiy axg Ui axy ) =Co ik Uiy

In the discussion section the results of the paramétric tests are shown for
optimum values for the coefficient Cp. The terﬁ with the laminar viscosity
v is added to account for the viscous effect.

The above mentioned model fs also compared with four existing algebraic
models. These are given as follows:

(1) The model of Daly and Harlow'’

au,u
"1"juk = -~ 0.25 c Ul ax, (16)

(i11) The model of Hanjalic and Laundér18

du,u au.u au.u
U.U.U = - Koo 1k, — ik, — %Y
uiujuk 0.11 c ["z"j ax! + uguy axl + uzuk axl ] (1)

(111) The model of shir'?

2 du.u .
L S I § A
ujuyu = - 0.04 e Tx (18)
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(iv) The model of Cormack et &i. 20
6 (a8 bn + Bepbey + &b ) B
Ugugp = 5 1€ 8844% e T 4k * k310 axy
+ a, («x"‘.J + a1j¢k + akj.i))r
+ 2% (2 ($ Bao + 8ed,. + bo.84,) - (19)
€ 3V ik i 135k JkTiL axt '
+ag (aga5, o + 34430 o * 3584y )]
where
— 2
315 = Uity ~ 3 Sk
(20)
a _i
ij.k " ax,

The coefficients are given in Table 2.

TABLE 2. Coefficients for ajy

a) - ap a3 as

-8.14x10~3  -1,72x10"2  -4.80x10"2  -1.02x10"!

3.3 Computed Results and Discussion

rln order to establish a reliable model for the prediction of the third-
sroments in the reattaching shear layer, the values of the mean velocities and
the second-moments are predetefmined tc solve the transport ecuations for
E;E;G;. That is the values of th; mean ve]oc1t1es,-a;33. k, and ¢
computed with the method described in the preceding chapter are stored, and
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“these values are retrieved when the transport eguations for E;E}E; are
corputed. In this way, the existing modeis for the triple-velocity products
are also evaluated and compared with the present third-moment ¢losure model.
Since £q. (15) represents the transport equations of EEE.'GE;.-E;;. and
vvv in a two-dimensional coordinate system, and all four components are asso-
ciated among themselves in their own equaticns, these four equations are

solved 1teratively. The iteration was terminated when the relative residual

source of each equation dropped below 3x10']2

Figures 12-14 compare the triple-velocity precduct distributions for dif-
ferent values of the coefficient Cp: 5.0, 6.0, and 10.0. The resu)ts-are
also compared with the experimental data of Chandrsuda and Bradshaw.5 As is
observed in this figure, the results are relatively sensitive to the value of

Cp. As Cp becomes larger the leveis of the triple-velecity products

decrease since this term (Eq. (14)) acts as a sink of uiuj"k' After a
number of parametric tests it fs found that the value of Cp = 5.8 gives the
best agreement with both the experimental data of Driver and Seegmi]]er23
and of Chandrsuda and Bradshaw.5 This optimum value corresponds 12 an
inverse coefficient c; = 1/C = 0.17 which {5 s1ightly larger than the
value of C; = 0.11 recommended fof the Hanjalic and Launder model (see

Eq. (17)).

Figures 15 - 20 compare the present computations of the triple-velocity
product profile with the experimental data of Chandrsuda and Bradshaw and of
Driver and Seegmiller, along with the four algebraic models at seiveral dif-
ferent locations downstream of the step. It is observed that two peaks appear
across the shear jayer: one along the core of the separated shear layer, the
other near the bottom wall. Although all the computations exhibit a similar

trend to the experimental data, the predicted levels of uju.u, are
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fairly different. Hhile the mode’l of Shir gives the lewast levels for all
three components, the model 6f Cormack et al. provides high levels for';;; and
;;;'but not for ;;;. AUnlike the model of Cormack et al., the Daly-Harlovw
model g1ves-high levels only for wuv and relatively low levels for both:;;;
and';;;: Among the algebraic models the results with the Hanjalic-Launder
model seem to be consistent showing nearly the same levels for all threevcom-
pouents. This {s because the Hanjalic-Launder model fs the only one that has
a symmetric property in ail three directions among the algebraic correlations.
Aqreement between the present computations with the transport equations
and the experimental data Is generally much better than that using the aige-
braic models for two reasons. First, the'coefficient. Cp. can be suftably
adjusted in the transport equations whereas the algebraic modeis have been
tested only for relatively simple shear flows and riot for the reattaching
shear layer. Second, the transport equations of ;:3;;; have a symmetric
property in all three directions; thus, the prediction with the transport
model is better than the prediction with algebraic mo&e]s for inhomogeneous
flows as well as for homogeneco.s ones. However, tiie most important point we
should note from these results is that the location of the peak along the
separated shear layer is predicted more accurately by using the transport
equations than by using algebraic models. This is primarily because the
transport mode] takes both the convection and the generation due to mean
strains into account} thus, the trail of energy propagation for the
triple-velocity products accorc: with the experimental data.
"The results in Figs. 15-2C aiso suggest that the transport model needs to
be improved to give better profiles near the wall. It is shown in these

figures that the computed levels are much higher than the cxperimental data
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near the wall. In the wall adjecent region the rodel must incorporate a Tow-

Reynolds nirmber effect although the computations in the free shear flew region

agree well with the data. The effect of the wall boundary condition on the

profiles of uiujuk near the wall was tested by adopting several other

models for the numerical nodes next to the wall. However, the influence of

the wall boundary condition was negligibly small. Therefore, to improve the

prediction of the triple-velocity products in the near-wall regfon, it is

advisable to develop a lTow-Revnolds number model in order to take the viscous

effect into account.

3.4 Summarizing Remarks

The development of the third-moment closure has been purshed throuah this
project. It is observed that the behavior of the triple-velocity products is
completely different from that in the boundary layer flows showing rapid decay

toward the solid wall in the separated shear layer.

It is noted that the transport equation model dramatically improves the
prediction of the triple-velocity products throughout the whole flow region
when compared with the algebraic third-mbment models. However, more extensive
tests are required for improving the transport equation model) since the clos~-
ing of the diffusion and pressure-stress terms of the transport equation has

not yet been justified. HMoreover, it is recommended that a Tow-Reynolds

number near-wall model be developed for the transport equation model.
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4. THE ALGEBRAIC-STRESS MODEL

4.1 Preliminary Remarks

while it is important to imprcve the prediction of the Reynolds stresses
in a wake regtion, it is equally important to develop a better expression for
empirical coefficients for the diffusion rate of the momentum equation. This
is because empirically determined'coeffiqients would increase uncertainties
and, thus the prediction becomes less accurate for more geometrically complex
turbulent flows.

The preceding chapters have dealt with the Reynolds-stress model. How-
ever, the algebraic-stress and the kK - ¢ models, which are the simpler
models of turbulence, are considered in this chapter in order to investigate

the for.aulation of the coefficient Cu by separating from many unknowns

which exist in the Reynolds-stress model. If the Reynolds~stress model (RSM)

were also used, it would be rather difficult to differentiate between the
errors due‘to the RSM and the Cu formulation. For futher simplification

of the problem, the solid wall is completely eliminated in the w ke region,
thus considering only the flow behind a disk.

The development of cu is based on the algebraic~stress model (ASH)

which was originated by Rodi.8 Although the Reynolds-stress transport model
as described in the preceeding chapters is one of the most advanced model, the
algebraiz-stress model (ASM) improves the prediction over the k - ¢ model.
Probably the most advantageous pdint of the algebraic-stress model (ASM) is
fts simplicity; the solution procedure of a transport equation is not re-
quired. The Reynolds stresses are determined by merely solving aigebraic

equations without using the line relaxation or tridiagonal matrix solvers, and
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thus it is much more economical in comparisen with the. Reynolds-stress
transport model.

The above mentioned algebraic-stress model (~SM) is used to formulate the
diffusion coefficient of the momentum equations. The model is compared with
the conventional empirical constant for the computations of wakes. Since the
formulation has to be general, axisymmetric flows have been chosen so that

three normal components of the stresses (uz. v2

. and wz) and the shear

stress (uv) are solved in the region behind a disk.

4.2 Formulation
The ASM for the axisymmetric fiow'can be obtained by using the propo:al
of Rodi.8 Rodi proposed that the convection-diffusion of the k-equation is

proportional to that of the Reynolds-stress transport equation such as

U, duLu L
= A B - o0 = p Uy =t - G (21)
m .
where D(k) is given as -
D(k) = j 2t "'3'55—] (22)

and where D(J;;;) represents the diffusion rate of ;;33. The final

form obtained is given as follows:

., 3/2

TR 2 _ -
1 L2, UGy - 5 8458 * Cp Ty (Byy- Dyy) -
3 443 5 372 (23)
e(= -C, ~C )
c 1 Wl ¢y

The ASM is comprised of four algebraic equations for the four Reynolds

stresses for a two-dimensional axisymmetric flqw. These are given as follows:
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2 k3/2
= [0-C)(6,-58) + €p " (Gy-B)
ut =k 372 >3 (28)
8 k
e+ G -G cy )
) 26y v €, ot (G, = 0,)
-5 (1-C,)(G,, - 5 G) + C -
Ve k 2% %2 ° 3 wp_ey_ 127 22 2 (25)
3/2 3
e(&ac, -c, E—
c )] wl Yy ’
Q E }(Gony = 2 6) + C K32 (6 = Dan)
—— - - <+ cdr—— -
W -k [ 220733 " 3 u23/5y 33~ 33 %] (26)
[} - k. ‘ .
e+ ¢ - Ch )
372 f
_ (1 = C,) Gyoy + C o —o— (Gy, = Dy5)
v = k [' 2.2 W ey 1212 ] (27
G k
C*+G-Ca )
The generation rate of turbulence kinetic energy (Eq. (7)) is d2fined as '
6o fiv (e 28, 282N - (28)
The components of the generation (Ed. (7)) for Reynoids stresses (uz. vz.
wz and uv) are given as : . "“':
2, ' ~
GH = -2(u 3% + uv ar) , . (29)
Tav, v
Gyp = =2(V" o+ uv ) - (30)
2V
Gyq = =2 Wt (31)
- 28 -
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5‘2 - =2(v +ut - r) {32)

The pressure-strain correlation as given by £q. (6) can be written as:

0= C i (u? - % k) = Cp(6yy - % 6) + [C, ¢ (u° - % k)

3/2
m— AV aUy.a kT ’
- Cpl2uv (3 - 3N | (33)
!
£ (2.2 - _2 e 2.2 :
O = Gy g (V- FH) =GBy - 3B + [ g (V=50 | *
3r2 o
— 32U V.., k - \
- Cptauv (Gp - 3N cy (34)
. K|
— - 3/2 '
€02 _ 24y o .2 €2 - _ t__. o
933 = ~Cy § (W° = 5K} = Co(6y5 = 3 6) + [Cy i (w k)] (3%5) P
. L
SO — 3/2 T
£ v - [ il 2 _ 2,30 8V, . kT ;o
$12 = 0y LUV = Cy Gy + [C o v = Col(u YGr - N oy (38) P!
é-
The secondary generation rates (Eq. (7)) are given as: !
AN
— ) L}
ay . — av ' !
Hyy = -2‘u2 8wl (31) i
SN2 Al
sz 2(v ar + uv ar) {30)
2V
Hyy = =2 w - (39)
Ay, 2V =y . |
len—(u ay+v ax-—uv f') (40)
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The mode) described above i3 also comparad with the k - ¢ model. In the
k - ¢ model the Reynolds stresses are computed by using the Boussinesq

viscosity concept. That is, all the Reynolds stresses are expressed as

follows:
p;i-%pk-zut'g—g (a1).
v =2 ok -2 2 (42)
elok-2u e

uy au oy, ' '
puv = = wel5r + 5 (43)

Here Ve is evaluated by using the following equation:
u, = C_ pkile : - (45)
t vp

In this study four cifferent“models are used out of which two a}e the
k - ¢ models and the other two are ASMs. The difference in the two k - ¢
models depends upon the value given to Cu. whether it is a Fonstant value
or a functional value derived from the ASH formulation. The difference in the
two ASMs is aiso the same. Hence, we can define the four models as follows:
ASHM I — stresses computed by ASM: cu = 0.09
ASH Il --- stresses compute§ by ASM: Cu e f
k-c I (standard k - ¢ model}) —— stresses cemputed.by kK - ¢t Cu = 0.09

k-c¢ 11 (modified k ~ ¢ model) -- stresses computed by k - ¢: Cu m f
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The'function f is derived upon taking the recirculating effects due to

-

two-directional mean strains into account in the formulation. The final form

is given as

3(6/:+C),n *ak (s/=+c)2 =N

T TR I A i b TIPTS50 e -
‘ 1Y

1-¢ .
ay av av,2 k 2_\Vv .
-4 ar ax + (ax) )+ € (G/c + Cl) r] (46)
The detafls of the formulation are given in Appendix. .
The cunstants used in the equations above are given in Table 3,
‘
TABLE 3. Constants
Cx Cat Cuw2 Gy C2
_ i
0.1 0.125 0.015 1.5 0.4 g
4.3 Computed Results and Discussion .
4.3.1 Computing Details 3‘
W gt
Exploratory tests were made for different mesh sizes to investiyate an

optimum grid independent state. Figure 22 gives mean velocity and the

Y I

Reynolds-stress profiles for differert grid sizes at x/D = 6 for the flow '
geometry in Fig. 21(2). |

It 1s clear that the velocity and the Reynolds-stress profiles approach
an equilibrium state for a grid density higher than 42x42. The percuntage

increase in the proberties from one grid size to another is given in Table 4.

- 271 -




)
'
TITaTmATT T

TABLE 4. Grid test at r/D = 0.5

‘Hesh Sizes ~  32x32 to 42x42 42742 to 52x52 52x52 to 62x62
U 55.0% 40.0% . 5.0%
w2 75.0% 25.0% ' 0.0%
v 66.6% 33.4% : 0.0%
w2 7.5% . 28.5% 0.Cx
w 62.5% 37.5% © o 0.0%

In Table 4 1t is observed that there is no appreciable changeAin stresses
from 52x52 to 62x62, and this is the reason why we opted for 62x62 as the
optimum grid size for all the computations in this chapter.

The inttial values for the Reynolds stresses are given by the solutions
of the k -~ ¢ model to ensure stability in the course of the {teraticn pro-
cess for the elliptic equations. The computation is “erminated when the
maximum residual source of the transport equation falls below 0.3 percent of
the total source of its equation. Although iteration number depends on many
factors such as grid size, flow geometry, boundary conditions, fnitial
conditions, Reynolds number, etc., the tvpical number ranges from 500 - 800
for the grid size 62x62.

The computational domain for the external flow past a disk consists of 30
step height lengths in the x-direc’fon and 5 step heights in the r-direction.
A compufation was also made by extunding the length from 30 to 40 step
heights. When the results obtained with two different geometries were com-
pared with each cther, no appreciable difference was observed in any proper-

ties. Thus, the gecmetry of 30 step height lengths is used in x-direction for
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all the computations of the external flows. The expansion ratio of 1.05 in

both x- and r-directions is found to be the best for this flow geometry. The
computational demain of the second gecmetry shown in Fig. 21(b) consists of a
Jength of 24 step heights in x-direction aﬁd two step heights in r-direction.

The optimum expansion ratics for this case are found to be 1.05 in x and 1.00

in r-directions.

4.3.2 External Flows

Figure 23 represents the mean velocity profiles at several locatfons in
the flow field beyond the body for the flcu geometry which is shown in Fig.
21(a). These are computed by employing k-c I, k-c¢ II, ASH I and ASM II.

These results are also compared with the experimental data obtained by

21

Carmody. The velocity profiles obtained with the models mentioned above

agree with the experimental data outside the separated shear flow region but
some Jisagreement is obserQed in the recirculating region which might be
attributed to the sharp edge of the disk used in the experimental setup caus-
ing a larger recirculation region than that- predicted in the present study.
Figures 24-27 represent the Reynolds stresses obtained by the ASM and the
k - ¢ mode) which are compared with the experimental data. The agrecement of
the stresses obtained by ASH I with the experimental data seems to be better
than agreement obtained by thc other models. The other models have ¢ similar

trend but do not agree with the experiment as closely as ASM I. The agreement

¢’ all the numerical models with the experimental data is hetter in the region

oittside the recirculation region. Since the k - ¢ modets (k-¢ I and k-¢
It) cannot take the non-isotropic effect into account, the errors in the
results obtained by the k - ¢ models are significant, particularly in the

recirculating region. ODespite the improvement with the use of the ASH models,
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fhese-models produce a second peak in the recircelating region (near the flow
impingement point), which is caused by the streamvise acceleration of the flow
near the flow impingement point. This s verified by a test in which the
gradient of the mean velecity in x-direction (2U/3x) {is omitted resulting
in diminishing of this second peak.

From the results mentioned above it is concluded that the algebraic-
stress models provide better results in the whole domain of the flow geometry
than the k - ¢ model. This is evident if we observe the results around the

flow 1mpingement point (x/D = 3.0) as surmarized in Table 5.

TABLE 5. Percentage error for Reynolds stress at r/D = 0.5 in comparison
with experimental data

uyv Uz V2 2
ASNT kel ASHI kel ASHI kel AAI kel

<

x/D=3 30% - 65% 51% 66% 30% 36% 4% 33%
x/D=6 21% nz 23% 61% 29% 50% 347 53%
x/D=9 10% 13% 10% 40% 25% 54% 18% 41%

Figure 28 shows the turbulence kinetic energy profiles obtained by using
the models considered in this study which are compared with the experimental
data. These profiles also show that ASH I is better than the other models.

Figure 29 shows the Cu distribution at different locations in the flow
field énd Fig. 30 shows the G/¢ profiles at the same locations. It is noted
that the Cv profiles for ASM II and k-c II are very close to each other
and so are the resﬁ1ts computed with them. It is also found that there is a

strong dependence of stress levels on the G/c distribution. If G/¢ is
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higher, then c” §s lower improving the Reynolds-stress levels; thus ASH I,
which has the smallest cv in most of the flow domain, 1s giving tha best
prediction of the Reynolds stresses among the models considered. The pesition
of the peak of G/¢ profiles shown in Fig. 30 computed by ASH I 4s higher

than the peaks produced using the other models. This {s because ASH I creates

only a small spreading rate.

4.3.3 Internal Flows

For the computations of internal flows only ASH I and k-c I are em-
ployed instead of using four models. Figure 31 represents the mean velocity
profiles in the flow directicn computed by using ASM I and k-c I. These are
compared with the experimental data of Taylor and Hhite1aw22 for D/DT u
0.5 (Fig. 21(b)). The results obtained by using ASH I agree well with the
experimental data and are better than those obtaineg_gsigg k-c_l: Figures

2 and wz)

32-34 represent the three Reynolds-stress profiies (uz. v
obtained by using k-¢ I and ASE I which are compared with expzrimental

data.zz In these figures it is a3so shown that ASM ! gives better resulis

for the flows in this geometry.

Even in the internal flow gecometry the second peak in the Reynolds-stress
profiles appears in the recirculating region near the flow impingement point
when using ASM I. This behavior caﬁ be explained in the same manner as done
in the case of the extérna] flow geometry.

The stresses shown in Figs. 32-34 are very small outside the mixing Javer

because of negligible generation ~ates. The stresses then grow slightly near

the top wall where the mean velocity decreases rapidly due to the viscous

effect from the wall. It i1s observed that the stresses u2 and u2 are
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higher than vz; this festure is similar to that of the wall boundary layer
flows.

Figure 35 shows the turbulence kinetic énergy distributicn obtained with
both k-« I and ASH I, and they are comparéd with the experimental data. The
turbulence kinetic energy shows the highest‘value near the flow impingement
point and it decays towards downstrcam. Here also it is shown that the re-
sults computed by using ASM I agree better with the experimental data. Figure
36 shows the G/¢ distribution obtained by ASH I and k-c I. The trend is

similar to the G/c distribution for the external flos (see Fig. 30).

4.4 Summarizing Remarks

The investigation in this chapter revealed that even the a1gebra1c stress
model improves the prediction of the Reynolds stresses considerably when com~
pared with the k - ¢ model. However, it is al1so observed that the formula-
tion of Cu based on the élgebra1c stress model does not improve the
prediction at all. This observation suggests that any model based on the
Boussinesq viscosity concept never improves the computations of the Reynolds
stresses. For this reason, we should discard the k - ¢ model tybe of
turtulence model and should create ﬁecond- or higher-moment closure models for

the computation of recirculating flows.
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§. APPLICATIGH TO HEAT TRANSFER PROBLEHS

5.1 Preliminary Remarks

The models developed in the course of thic project can be applied to many
industrial problems without making many modifications. One application we
exercised recently was the computation of the flow and heat transfer rates in
pertodically corrugated wall chaanels which appear in a corrugated-wall-
channel heat exchanger. The Reynolds-stress model was primarin employed for
the computations of the hydrodynamic turbulence variations and the heat-
momentum analogy was used to evaluate the heat transfer rates. The results
uere'compared with ¢the computations made by using the k - ¢ model. The main
concern regarding the differences produced by the two different closure models
{s whether the non-isotropic effect in the corrugated wall channel is predomi-

nant or not. If it is, a significant difference will occur in the results of

the computations.

5.2 Cocmputational Hethod

The computational domatn of the flow field is the region ATCDEJIHGF (in

Fig. 37). This region consists of two cyclec (ABCDIHGF) ang the additional
region (DEJI). For computations of laminar flows, only one cycle of the
corrugated wall channel may be used with a periodic inlet/outlet condition;
however, a two-cycle system is needed for complex turbulent flow computations
because of numerical instability. In turbulent flow equations more nonlinear
transport coefficients appear which results in a very poor histo-y of conver-
gence performance in the course of the iteration process. In addition, a
two-pass procedure is employed. That is, the computation was started out with
a constant prescribed inlet condition at AF and an outflow condition at EJ.

With a 1ine relaxation method, computations were iterated until relative
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residual sources of all the transport equations decreased below 2%. Then the
perfodic condition was activated by transferring the updated values at the
section DI to the inlet section AF. Firally, the comnutation was terminated
when all the relative residual scurces became less than 0.1%.

At the wall boundaries, the momentum, energy and the turbulénce kinetic
energy were evaluated from the "law of the wall® whifle the ehergy dissipation
rate was determined from the ®local equilibrium condition,® which gives linear
variation of the turbulence length scale from the solid wall.

The average friction factor is computed as

b ep

2 L
PUL

fw- (47)

where L is the distance betwsen corresponding planes and AP is the averace
pressure drop between these planes.

The local Nusselt number is obtained by the following equation

(&u/r)zz:

e M (48)
lTH = Tbl

Nu

where the constant heat flux condition is employed. The bulk temperature,

Tb' is determined as

Tiujdy -

T =1 4
b = Juldy (49)
where the integrals are to be carried over the cross-sectional area of the
channel. The absolute value of th: velocity is taken so that the regions with
reverse flows are also properly represented. Accordingly, the averaged

Husselt number is defined as
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Nu = S J hdx : (50).

where x §s the coordinate along the channgI wall.

5.3 Comouted Results and Discussion

5.3.1 Validation Test of the Revnolds Stresses

Due to lack of experimantal data for corrugated wall channel flows, the

present numerical model cannot be justified for all the variables obtained.

In particular, turbulence guantities such as the Reynolds stresses need to be

compared with some experimental data. For this reason, data for a backward
facing step flow was chosen to perform a validation test of the Reynolds
stresses since the wall region behind a step is similar to fhe flow field
along the wall ABCDE in Fig. 37.

Figure 38 shows the computed results of the mean velocity and the
Reynolds-stress distributions in the region behind the step. These results
are compared with the experimental data of Driver and Seegmiller.23 Here 52
x 52 grid points are used for the computational region of 50a x 5a. Both in
rgcircu]ating and recovering regions, agreement between the présent computa-

tions and the experimental data is reasonably gocd (within 30%).

5.3.2 Average Nusselt Number and Skin Friction Coefficients

Figure 39 shows Nu/Pr‘o'3 as a8 function of Reynolds number. The
experimental data of both Izumi et a'l.24 and of O'Brien and Sparr‘ow25 are

used for comparison with the present computations. Although the geometry

considered by 0'Brien and Sparrow has a bend of 120° and a/b = 1.6, the levels

of the average Nusselt number seem to be almost the same as those given by

Izumi et al. in which a channel with a 90® bend and a/b = 2 were used.
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For a/b = 2, the computations by the k - ¢ rode1?® and the present
model (RSH) are also compared. It is notceworthy that the RSH improves the
prediction by 30% compared with the k - ¢ modei. This observation is
_ consistent with the case of an infinitely long channel with two bends27 in
which it was also discerned that the prediction of the Husselt number was
improved by 20-30% by employing the RSM. This is because the turbulence
levels in recirculating regions are correctly evaluated since the RSH accounts
for non-fsotropic behavior of the Reyno]d§ stresses.

‘ In Fig. 39 the computations for a/b = 1.5 and 1.25 are also shown. It is
observed that the difference in the Nusselt number created by the change in
corrugation period is minor showing only a 2-3% decrease from a/b = 1.5 to
2.0. This result is also consistent with the experiments of both Izumi et al.
(a/b =2) and 0'Brien and Sparrow (a/b = 1.6).

Figure 40 shows the skin friction coefficient as a function of Revnolds
ﬁumber. Unlike the case of the Nusselt number, the skin friction rate depends
on the corrugation period, asb. It is observed that the dependency of f on Re
is constant for both a/b = 1.25 and 1.5, bhut for a/b = 2 it decreases siightly
as the Reynolds number increases for Re > 3000. In Fig. 40 expgrimehta1 data
for a straight channel is compared wifh the computations. This figure shows
that the computed curves approach the strajght channel data as a/b decreases

to zero.

5.3.3 Velocity and the Reynolds-Stress Profiles

Figure 41 demonstrates the velocity vectors in different ctannels. As is
shown, recirculating flow is created at each concave corner of the channel.
The flow impingement position and the recirculating region are dependent on

the corrugation period, a/b.
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Computed mean velocities and the Reynolds stresses in the channel where
a/b = 2 and for Re = 3000 are shown in Fig. 42. At section B, the mean veloc-
ity becomes maximum near the wall AB, and it decreases sharply towg:f the wall
AB. This high shear stress is czusing high levels of the stresses u2 and
;3 in thaf region. If we look at the region near the opposite side of the
cﬁannel (FG wall), the mean velocity profile {s rather smooth although the
velocity becomes regative near the wall FG due to a reéirculating flow; thus,

the normal stresses are not as high as the shear stress uv. The levels of

u2 and v2

interchange in tQE_next bend section (E:fss-section CH) showing

a relatively high level of v2 and a low level of u2 because the y com-

ponent of ve10g1}y {s predominant over the k component mean velquty. At
section H, the u2 Tevel is higher near the wall HI, whereas the v2 level

is high near the opposite side of the channel where the y component of the
velocity 1s stil1l large due to the flgw deflection caused by the separation at

the corner H. The maximum point of u2 moves to the wall DE as we move

toward downstream.

5.3.4 Flow in a Channe] with Fins

Computations were made for flows in channels which have fins inserted at
each bend to cause more deflection of the flow. Local Nusselt number distri-
butions are shown ir Figs. 43 and 44 for a/b = 1.25 and 1.5, respectively.
Although the general pattern of the dictribution is similar for both a/b =
1.25 and 1.5, the distribution depends on the length of the fin. When fins
are inserted, the position of the peak of the Nusselt number moves toward the
corner C along the wall BC. This is mainly due to the expansion of the
recirculating region downstrzam of the corner B with the insertion of the

fins. A similar trend also appears near the wall D. It §s commonly abserved
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that the heat transfer rates increase as the length of the fin increases up to
Leyn/d = 0.5. However, the case of'Lf1n/b « 0.75 does not display propor-
tional increases in the heat transfer rates.

The dependence on the length of fins is also shown in Fig. 45 for the
average Husselt number. Here the average Nusselt number {ncreases as Lf1n
increases from 0 to 0.5b, but it stays at constant values for longer fins.

The rate of increase in the Nusselt number is larger for higher Reynolds num-

bers. '

5.4 Summarizing Remarks ‘ )

In this chapter, w2 saw an application of the Reynolds-stress model to a !
heat exchanger problem. QOne of the most impressive features shown here is
that the Reyho]ds-stress model improves the computation of the heat transfer
rates by 20-30%. This is mainly because the heat transfer rates are almost i
proportional to the hydrodynamic variables, thus if the turbulence levels are

evaluated correctly so are the heat transfer rates.

r- - SR e v
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6. FIMAL REMARKS AHD FUTURE HORK

In this project both the second- and third-momznt closures have been in-
vestigated. Thé radels developed revealed significant improvement in the
prediction of complex turbulent shear flows that are accompanied by reattach-
ment, recirculation, and flow deflecticn. However, the tests were made only
for each component of each model--that 1s, the third-moment transport equa-
tions were solved without coupling to the second-moment equations. Although
each modeling seems to be successfully carried out, ther2 is no guarantee that
these models perform egually well when all the transport equaticns are solved
simultaneously. At that stage it is anticipated that a huge amount of
computational time and storage will be required since numbers of transport
equations have to be solved by employing sufficiently high density of mesh
size. Probabiy the problem, if any, will be numerical instability rather than
a difficulty due to mathematical complexity. For this reason we believe it is
extremely important to complete the component study ptior to consolidating all
the models in one package of the cumputer code.

It should also be noted that there is plenty of room for improvement of
the presently developed second- and third-moment models. For example, a Yow
Reynolds number model coupled with a near-wall correction must be incorporated
for the third-moment closure equations. Secondly, the development of the
equivalent models for tﬁrbulence scalar quantities (heat or chemical species)
will undoubtedly advance the state-of-the-art technology in turbulence model-

ing for applications of many indusirial problems.
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APPEXDIX
FORHULATION OF ASH (Algebraje Stress Hodel)

The transport equation for the kinetic energy can be written as

g—E’-D(k)-c-G-c

(A.1)
The transport equation for the Reynolds stresses is given by
Du,u
T D(u‘uJ) + G1j -"1j + °1j ) _ (A.2)

where D(uiuj) is the diffusion rate of the Reynolds stresses. Rodia
proposed that the conveztion-diffusion string of the k-equation is assumed to

be proportional to that of the Reynolds-stress transport equation,

as givcn in

the equation below.

E-G-' A Du,u o

~F (o - 000 = - - o (A.3)

From (A.2) and (A.3) we have
Now, substituting gq. (A.1) in (A.4) we have

u,u

T (6= ) =6y - ey *13 | (A.%)

where *13 is defined in EQs. (33)-(36). From the proposal of

_ Da1y—Har?ow.]7 we have.
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Using the above result in (A.5) we have

ugu i}
-E~1 G Gij + ¢1j

or

2
k"3 %43) - Calbyy - 3 84460)

+ [0,  (byuy - : 814%)

1372

* CalGyy - W) o

After rearranging, we have

usu 2 k3/2
(=3 856+ Cqe - v €l

6y - C,6 2 2 ' ' K2
"By 7 by B 3 8y m 3 8430 + [C,(6 - Wi T3

Regrouping the terms we have

372

o o O AN - S S
X - I HPC G - Ty
) 372
= (G645 = 38438 + Cp T2y (Byy ~ Hyy)
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Finally, the equation for Reynolds stresses is given as follows:

— 3/2
49 2, O C)Gyy - Fa® + 0, B ey -y (A.8) ‘
K 3% " k3/2 ° 1
°(;+ G - cy w1) '
1
By neglecting wall effects and the secondary mean stratns, 2. vz and uv ’!
are given as follows
—_ 1-C.) .
2 _ 2k ( 27— a3V ay 2 ¢
u® === v [ 2 =]+ 5k (A.9) :
¢ (g + c]) ax or 3 3
i)
. 3
b
- 1-C.) ‘
2 2k (-G au . av, . 2
via2k Wi -2 .2y (A.10) ‘
(= +C;) i
e 1 .
§
(-C,) !
— - 2l 2ay —vy S
-uv = [ve =+ u€ == - yv 3 (A.11) i
(__ + c ) ar ax r | |
i
o
L
Substituting Egs. (A.9) and (A 10) into (A.11) and sindlifying, we get }
; .
2, 1-¢C 1-C .
o2k 2 o (Y2 ., auav Y2} Sk 2.\v .
w-=3 2(9 ) uv <(ar) 4Aar ax ¥ ax) ) (G )r T
c . + C] - + C]
1-C,)
2.2 O0-G au . av
-3 k c(g AP ar ax] (A.12)
€ 1

After mu]tiplying both sides by p and rearranging, we have
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stnce u, = -puv/(2L 4

c, “3(—2 +2)/n+__k_2( z)z <auz

c 1

ar ax

1-C
2.\2,
/ [V =
C —-+C
1-C
3Ua\’ V.2 k{ 2
43 + ( ) ce\G
PR

%%) and Cu = uy c/pkz. we have

au av
ar ax
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Figure 40

Average skin friction coefficient as a function of Reynolds

number
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