783 research outputs found
Comment on "Attractive Forces between Electrons in 2 + 1 Dimensional QED"
It is shown that a model recently proposed for numerical calculations of
bound states in QED is in fact an improper truncation of the Aharonov-Bohm
potential.Comment: 4 page
Nonperturbative solution of the Nonconfining Schwinger Model with a generalized regularization
Nonconfining Schwinger Model [AR] is studied with a one parameter class of
kinetic energy like regularization. It may be thought of as a generalization
over the regularization considered in [AR]. Phasespace structure has been
determined in this new situation. The mass of the gauge boson acquires a
generalized expression with the bare coupling constant and the parameters
involved in the regularization. Deconfinement scenario has become transparent
at the quark-antiquark potential level.Comment: 13 pages latex fil
Canonical Quantization of the Self-Dual Model coupled to Fermions
This paper is dedicated to formulate the interaction picture dynamics of the
self-dual field minimally coupled to fermions. To make this possible, we start
by quantizing the free self-dual model by means of the Dirac bracket
quantization procedure. We obtain, as result, that the free self-dual model is
a relativistically invariant quantum field theory whose excitations are
identical to the physical (gauge invariant) excitations of the free
Maxwell-Chern-Simons theory. The model describing the interaction of the
self-dual field minimally coupled to fermions is also quantized through the
Dirac bracket quantization procedure. One of the self-dual field components is
found not to commute, at equal times, with the fermionic fields. Hence, the
formulation of the interaction picture dynamics is only possible after the
elimination of the just mentioned component. This procedure brings, in turns,
two new interaction terms, which are local in space and time while
non-renormalizable by power counting. Relativistic invariance is tested in
connection with the elastic fermion-fermion scattering amplitude. We prove that
all the non-covariant pieces in the interaction Hamiltonian are equivalent to
the covariant minimal interaction of the self-dual field with the fermions. The
high energy behavior of the self-dual field propagator corroborates that the
coupled theory is non-renormalizable. Certainly, the self-dual field minimally
coupled to fermions bears no resemblance with the renormalizable model defined
by the Maxwell-Chern-Simons field minimally coupled to fermions.Comment: 16 pages, no special macros, no corrections in the pape
The Low Energy Limit of the Chern-Simons Theory Coupled to Fermions
We study the nonrelativistic limit of the theory of a quantum Chern--Simons
field minimally coupled to Dirac fermions. To get the nonrelativistic effective
Lagrangian one has to incorporate vacuum polarization and anomalous magnetic
moment effects. Besides that, an unsuspected quartic fermionic interaction may
also be induced. As a by product, the method we use to calculate loop diagrams,
separating low and high loop momenta contributions, allows to identify how a
quantum nonrelativistic theory nests in a relativistic one.Comment: 18 pages, 8 figures, Late
Chiral Bosons Through Linear Constraints
We study in detail the quantization of a model which apparently describes
chiral bosons. The model is based on the idea that the chiral condition could
be implemented through a linear constraint. We show that the space of states is
of indefinite metric. We cure this disease by introducing ghost fields in such
a way that a BRST symmetry is generated. A quartet algebra is seen to emerge.
The quartet mechanism, then, forces all physical states, but the vacuum, to
have zero norm.Comment: 9 page
The noncommutative degenerate electron gas
The quantum dynamics of nonrelativistic single particle systems involving
noncommutative coordinates, usually referred to as noncommutative quantum
mechanics, has lately been the object of several investigations. In this note
we pursue these studies for the case of multi-particle systems. We use as a
prototype the degenerate electron gas whose dynamics is well known in the
commutative limit. Our central aim here is to understand qualitatively, rather
than quantitatively, the main modifications induced by the presence of
noncommutative coordinates. We shall first see that the noncommutativity
modifies the exchange correlation energy while preserving the electric
neutrality of the model. By employing time-independent perturbation theory
together with the Seiberg-Witten map we show, afterwards, that the ionization
potential is modified by the noncommutativity. It also turns out that the
noncommutative parameter acts as a reference temperature. Hence, the
noncommutativity lifts the degeneracy of the zero temperature electron gas.Comment: 11 pages, to appear in J. Phys. A: Math. Ge
Attractive Forces Between Electrons in QED
Vacuum polarization effects are non-perturbatively incorporated into the
photon propagator to eliminate the severe infrared problems characteristic of
QED. The theory is thus rephrased in terms of a massive vector boson whose
mass is . Subsequently, it is shown that electron-electron bound
states are possible in QED.Comment: revtex, 10 pages and four figures, IFUSP/P-98
Exact Renormalization of Massless QED2
We perform the exact renormalization of two-dimensional massless gauge
theories. Using these exact results we discuss the cluster property and
confinement in both the anomalous and chiral Schwinger models.Comment: 14 pages, no figures, introduction and conclusions modifie
- âŠ