2,831 research outputs found

    Thermodynamic behavior of trivalent gallium, aluminum and iron distributions in garnets

    Get PDF
    Data on distribution of ions of gallium, aluminum, and iron among tetrahedral and octahedral sites in garnet

    Tripartite Entanglement versus Tripartite Nonlocality in Three-Qubit Greenberger-Horne-Zeilinger-Class States

    Get PDF
    We analyze the relationship between tripartite entanglement and genuine tripartite nonlocality for three-qubit pure states in the Greenberger-Horne-Zeilinger class. We consider a family of states known as the generalized Greenberger-Horne-Zeilinger states and derive an analytical expression relating the three-tangle, which quantifies tripartite entanglement, to the Svetlichny inequality, which is a Bell-type inequality that is violated only when all three qubits are nonlocally correlated. We show that states with three-tangle less than 1/2 do not violate the Svetlichny inequality. On the other hand, a set of states known as the maximal slice states does violate the Svetlichny inequality, and exactly analogous to the two-qubit case, the amount of violation is directly related to the degree of tripartite entanglement.We discuss further interesting properties of the generalized Greenberger-Horne-Zeilinger and maximal slice states

    The evolution of the Hong Kong currency board during global exchange rate instability, 1967-1973

    Get PDF
    Hong Kong SAR is well known as one of the few economies to operate a form of currency board as the basis of its monetary system. This system arose out of colonial status and has been retained except for a period of floating from 1975-83 to the present day, with some amendments. This article explores the evolution of the Exchange Fund during a period of global exchange rate instability showing that the abandonment of the monetary anchor in 1975 was part of a series of innovations to the use of the Fund as the colonial government sought to manage the exchange rate risks posed by the collapse of the Bretton Woods system

    Photon Statistics of a Single Atom Laser

    Get PDF
    We consider a laser model consisting of a single four-level or three-level atom, an optical cavity, and an incoherent pump. Results for photon statistics for varying pump levels are obtained using a quantum trajectory algorithm. In particular, we calculate the mean photon number, Fano factor (which is the variance over the mean). We examine that the behavior of the single-atom device as β, the fraction of spontaneous emission into the lasing mode, is varied. Typical values considered for β are 0.01\u3cβ\u3c1.0. We find that for large enough β, lasing action, with properties similar to those predicted by semiclassical theories that factorize atom-field correlations and use a small-noise approximation, can occur. Squeezing can occur as β is increased. There is no evidence of a sharp phase transition from weakly excited thermal light to coherent light at a particular pump power. This is consistent with work on many-atom lasers with β values in the range considered here. As β is increased, the output goes from quasithermal light to coherent and finally to squeezed light, progressing into a fully quantum-mechanical regime. We also consider the effects of cavity damping and spontaneous emission rates on these results

    Two-particle interference in standard and Bohmian quantum mechanics

    Get PDF
    The compatibility of standard and Bohmian quantum mechanics has recently been challenged in the context of two-particle interference, both from a theoretical and an experimental point of view. We analyze different setups proposed and derive corresponding exact forms for Bohmian equations of motion. The equations are then solved numerically, and shown to reproduce standard quantum-mechanical results.Comment: Minor corrections, 2 references added, version to appear in J. Phys.
    corecore